Loading…
Ultimate strength assessment of plated steel structures with random pitting corrosion damage
Pitting corrosion poses a threat to plated steel structures serving in aggressive corrosion environments. This paper involves numerical studies on the structural behaviour and ultimate strength reduction of plated steel structures due to random pitting damage. Stochastic simulations were used to mod...
Saved in:
Published in: | Journal of constructional steel research 2018-04, Vol.143, p.331-342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pitting corrosion poses a threat to plated steel structures serving in aggressive corrosion environments. This paper involves numerical studies on the structural behaviour and ultimate strength reduction of plated steel structures due to random pitting damage. Stochastic simulations were used to model the random nature of the pitting corrosion varying pitting shape, depth and distribution. A series of nonlinear analyses were performed on unstiffened plates and stiffened panels to understand the mechanisms of structural collapse due to random pitting damage. Empirical formulae were derived respectively for the prediction of ultimate strength reductions of unstiffened plates and stiffened panels in terms of regression analysis from the numerical results. Random pitting corrosion induces a variation and reduction in ultimate strength, and can lead to a transition in failure mode. The collapse of pitted structures under uniaxial compression has a feature that the onset of plasticity initiates in the areas close to the unloaded edge of the structure, and propagates into a continuous plasticity region linking the pits with highly concentrated stress. The pitted area with intensively stress-concentrated pits undergoes a locally amplified deformation that determines the failure mode, leading to structural failure.
•Develop a modeling method to simulate random pitting damage on unstiffened plates and stiffened panels•Clarify failure mechanism of structure due to random pitting damage•Study probabilistic characteristics of ultimate strengths of pitted plated structure•Regressive analysis of ultimate strength reduction due to actual pitting damage |
---|---|
ISSN: | 0143-974X 1873-5983 |
DOI: | 10.1016/j.jcsr.2018.01.014 |