Loading…
P-partition generating function equivalence of naturally labeled posets
The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must...
Saved in:
Published in: | Journal of combinatorial theory. Series A 2020-02, Vol.170, p.105136, Article 105136 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543 |
container_end_page | |
container_issue | |
container_start_page | 105136 |
container_title | Journal of combinatorial theory. Series A |
container_volume | 170 |
creator | Liu, Ricky Ini Weselcouch, Michael |
description | The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. |
doi_str_mv | 10.1016/j.jcta.2019.105136 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jcta_2019_105136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097316519301177</els_id><sourcerecordid>S0097316519301177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFNfoOukSboNeJFFd4UFPeg5TNPpklLbNcku7NvbWs-eBr7h_5n5GLvnsOTAi4d22dqIyxy4HoHiorhgCQddZFBqfckSAL3KBC_UNbsJoQWAXHGZsM17dkAfXXRDn-6pJ4_R9fu0Ofb2l9H30Z2wo95SOjRpj_HosevOaYcVdVSnhyFQDLfsqsEu0N3fXLDPl-eP9TbbvW1e10-7zAopY1ZSKbiueaUQymZlyyoXYpUTVnU97pSSRQVWocy5lboEYXFkWoxQVoWSYsHyudf6IQRPjTl494X-bDiYSYVpzaTCTCrMrGIMPc4hGi87OfImWDd9VDtPNpp6cP_FfwBIqWgX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>P-partition generating function equivalence of naturally labeled posets</title><source>Elsevier</source><creator>Liu, Ricky Ini ; Weselcouch, Michael</creator><creatorcontrib>Liu, Ricky Ini ; Weselcouch, Michael</creatorcontrib><description>The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</description><identifier>ISSN: 0097-3165</identifier><identifier>EISSN: 1096-0899</identifier><identifier>DOI: 10.1016/j.jcta.2019.105136</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Combinatorial hopf algebra ; P-Partition ; Quasisymmetric function</subject><ispartof>Journal of combinatorial theory. Series A, 2020-02, Vol.170, p.105136, Article 105136</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</citedby><cites>FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Ricky Ini</creatorcontrib><creatorcontrib>Weselcouch, Michael</creatorcontrib><title>P-partition generating function equivalence of naturally labeled posets</title><title>Journal of combinatorial theory. Series A</title><description>The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</description><subject>Combinatorial hopf algebra</subject><subject>P-Partition</subject><subject>Quasisymmetric function</subject><issn>0097-3165</issn><issn>1096-0899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFNfoOukSboNeJFFd4UFPeg5TNPpklLbNcku7NvbWs-eBr7h_5n5GLvnsOTAi4d22dqIyxy4HoHiorhgCQddZFBqfckSAL3KBC_UNbsJoQWAXHGZsM17dkAfXXRDn-6pJ4_R9fu0Ofb2l9H30Z2wo95SOjRpj_HosevOaYcVdVSnhyFQDLfsqsEu0N3fXLDPl-eP9TbbvW1e10-7zAopY1ZSKbiueaUQymZlyyoXYpUTVnU97pSSRQVWocy5lboEYXFkWoxQVoWSYsHyudf6IQRPjTl494X-bDiYSYVpzaTCTCrMrGIMPc4hGi87OfImWDd9VDtPNpp6cP_FfwBIqWgX</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Liu, Ricky Ini</creator><creator>Weselcouch, Michael</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>P-partition generating function equivalence of naturally labeled posets</title><author>Liu, Ricky Ini ; Weselcouch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial hopf algebra</topic><topic>P-Partition</topic><topic>Quasisymmetric function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ricky Ini</creatorcontrib><creatorcontrib>Weselcouch, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ricky Ini</au><au>Weselcouch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-partition generating function equivalence of naturally labeled posets</atitle><jtitle>Journal of combinatorial theory. Series A</jtitle><date>2020-02</date><risdate>2020</risdate><volume>170</volume><spage>105136</spage><pages>105136-</pages><artnum>105136</artnum><issn>0097-3165</issn><eissn>1096-0899</eissn><abstract>The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcta.2019.105136</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-3165 |
ispartof | Journal of combinatorial theory. Series A, 2020-02, Vol.170, p.105136, Article 105136 |
issn | 0097-3165 1096-0899 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jcta_2019_105136 |
source | Elsevier |
subjects | Combinatorial hopf algebra P-Partition Quasisymmetric function |
title | P-partition generating function equivalence of naturally labeled posets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-partition%20generating%20function%20equivalence%20of%20naturally%20labeled%20posets&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20A&rft.au=Liu,%20Ricky%20Ini&rft.date=2020-02&rft.volume=170&rft.spage=105136&rft.pages=105136-&rft.artnum=105136&rft.issn=0097-3165&rft.eissn=1096-0899&rft_id=info:doi/10.1016/j.jcta.2019.105136&rft_dat=%3Celsevier_cross%3ES0097316519301177%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |