Loading…

P-partition generating function equivalence of naturally labeled posets

The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial theory. Series A 2020-02, Vol.170, p.105136, Article 105136
Main Authors: Liu, Ricky Ini, Weselcouch, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543
cites cdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543
container_end_page
container_issue
container_start_page 105136
container_title Journal of combinatorial theory. Series A
container_volume 170
creator Liu, Ricky Ini
Weselcouch, Michael
description The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.
doi_str_mv 10.1016/j.jcta.2019.105136
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jcta_2019_105136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097316519301177</els_id><sourcerecordid>S0097316519301177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFNfoOukSboNeJFFd4UFPeg5TNPpklLbNcku7NvbWs-eBr7h_5n5GLvnsOTAi4d22dqIyxy4HoHiorhgCQddZFBqfckSAL3KBC_UNbsJoQWAXHGZsM17dkAfXXRDn-6pJ4_R9fu0Ofb2l9H30Z2wo95SOjRpj_HosevOaYcVdVSnhyFQDLfsqsEu0N3fXLDPl-eP9TbbvW1e10-7zAopY1ZSKbiueaUQymZlyyoXYpUTVnU97pSSRQVWocy5lboEYXFkWoxQVoWSYsHyudf6IQRPjTl494X-bDiYSYVpzaTCTCrMrGIMPc4hGi87OfImWDd9VDtPNpp6cP_FfwBIqWgX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>P-partition generating function equivalence of naturally labeled posets</title><source>Elsevier</source><creator>Liu, Ricky Ini ; Weselcouch, Michael</creator><creatorcontrib>Liu, Ricky Ini ; Weselcouch, Michael</creatorcontrib><description>The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</description><identifier>ISSN: 0097-3165</identifier><identifier>EISSN: 1096-0899</identifier><identifier>DOI: 10.1016/j.jcta.2019.105136</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Combinatorial hopf algebra ; P-Partition ; Quasisymmetric function</subject><ispartof>Journal of combinatorial theory. Series A, 2020-02, Vol.170, p.105136, Article 105136</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</citedby><cites>FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Ricky Ini</creatorcontrib><creatorcontrib>Weselcouch, Michael</creatorcontrib><title>P-partition generating function equivalence of naturally labeled posets</title><title>Journal of combinatorial theory. Series A</title><description>The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</description><subject>Combinatorial hopf algebra</subject><subject>P-Partition</subject><subject>Quasisymmetric function</subject><issn>0097-3165</issn><issn>1096-0899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFNfoOukSboNeJFFd4UFPeg5TNPpklLbNcku7NvbWs-eBr7h_5n5GLvnsOTAi4d22dqIyxy4HoHiorhgCQddZFBqfckSAL3KBC_UNbsJoQWAXHGZsM17dkAfXXRDn-6pJ4_R9fu0Ofb2l9H30Z2wo95SOjRpj_HosevOaYcVdVSnhyFQDLfsqsEu0N3fXLDPl-eP9TbbvW1e10-7zAopY1ZSKbiueaUQymZlyyoXYpUTVnU97pSSRQVWocy5lboEYXFkWoxQVoWSYsHyudf6IQRPjTl494X-bDiYSYVpzaTCTCrMrGIMPc4hGi87OfImWDd9VDtPNpp6cP_FfwBIqWgX</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Liu, Ricky Ini</creator><creator>Weselcouch, Michael</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>P-partition generating function equivalence of naturally labeled posets</title><author>Liu, Ricky Ini ; Weselcouch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial hopf algebra</topic><topic>P-Partition</topic><topic>Quasisymmetric function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ricky Ini</creatorcontrib><creatorcontrib>Weselcouch, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ricky Ini</au><au>Weselcouch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-partition generating function equivalence of naturally labeled posets</atitle><jtitle>Journal of combinatorial theory. Series A</jtitle><date>2020-02</date><risdate>2020</risdate><volume>170</volume><spage>105136</spage><pages>105136-</pages><artnum>105136</artnum><issn>0097-3165</issn><eissn>1096-0899</eissn><abstract>The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z+. Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcta.2019.105136</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0097-3165
ispartof Journal of combinatorial theory. Series A, 2020-02, Vol.170, p.105136, Article 105136
issn 0097-3165
1096-0899
language eng
recordid cdi_crossref_primary_10_1016_j_jcta_2019_105136
source Elsevier
subjects Combinatorial hopf algebra
P-Partition
Quasisymmetric function
title P-partition generating function equivalence of naturally labeled posets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-partition%20generating%20function%20equivalence%20of%20naturally%20labeled%20posets&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20A&rft.au=Liu,%20Ricky%20Ini&rft.date=2020-02&rft.volume=170&rft.spage=105136&rft.pages=105136-&rft.artnum=105136&rft.issn=0097-3165&rft.eissn=1096-0899&rft_id=info:doi/10.1016/j.jcta.2019.105136&rft_dat=%3Celsevier_cross%3ES0097316519301177%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-8e8319d1b5a08f7c8b23372eabdd8e85546b0c5a421c49803ca55493b0c4b6543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true