Loading…
Enhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines
A highly efficient methodology for the selective synthesis of nitrogen heterocycles via Friedländer reaction using carbon materials supported ZnO catalysts under the green chemistry domain is presented. The influence of the physicochemical properties of different carbon supports, in particular an ac...
Saved in:
Published in: | Journal of environmental chemical engineering 2022-02, Vol.10 (1), p.106879, Article 106879 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A highly efficient methodology for the selective synthesis of nitrogen heterocycles via Friedländer reaction using carbon materials supported ZnO catalysts under the green chemistry domain is presented. The influence of the physicochemical properties of different carbon supports, in particular an activated carbon (AC), multi-walled carbon nanotubes (MWCNT) and a carbon aerogel (CA), on the catalytic performance is discussed. The developed catalysts are easily prepared by simple incipient wetness impregnation and a subsequent thermal treatment. These ZnO/carbon catalysts showed a great performance in the Friedländer condensation of 2-amino-5-chlorobenzaldehyde and carbonylic compounds with enolizable hydrogens, under solvent-free and mild conditions, affording in all cases selectively a total conversion to the corresponding quinoline. Both the Zn loading in combination with the developed microporosity of the selected carbon supports seem to be the key factors determining the catalytic performance. Yields obtained with ZnO/carbon composites catalysts are superior to those obtained by others widely used in fine chemistry such as, Zn-catalysts supported on mesoporous silica (SBA-15) and Zn-metal-organic-frameworks (MOF).
[Display omitted]
•ZnO/carbon catalysts showed a great performance in the Friedländer reaction.•Catalysts are easily prepared by incipient wetness impregnation and thermal treatment.•Zn content and porosity of the supports are key determining the catalytic performance.•These catalysts are a sustainable alternative to MOFs or mesoporous silicas. |
---|---|
ISSN: | 2213-3437 2213-3437 |
DOI: | 10.1016/j.jece.2021.106879 |