Loading…
Can tundish deskulling waste be used as a magnesium oxide source to develop magnesium phosphate cement?
Ordinary Portland cement (OPC) has a significant environmental impact since approximately 0.81 kg of CO2 is generated for every kilogram produced. Thus, it is mandatory to look for sustainable alternative cements. One of the most promising materials in this sense is magnesium phosphate cement (MPC)....
Saved in:
Published in: | Journal of environmental chemical engineering 2023-10, Vol.11 (5), p.110618, Article 110618 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ordinary Portland cement (OPC) has a significant environmental impact since approximately 0.81 kg of CO2 is generated for every kilogram produced. Thus, it is mandatory to look for sustainable alternative cements. One of the most promising materials in this sense is magnesium phosphate cement (MPC). This study evaluates the possibility of revaluing a waste obtained from the tundish deskulling (TUN) as a raw material for formulating alternative MPC. This approach aims to promote the circular economy and minimizing the environmental impact of MPC. The tundish working lining is a crucial refractory material used in continuous steel casting. An optimal cement formulation was achieved by maximizing the compressive strength (CS) at 7 days, resulting in the combination of 60 wt% of TUN and 40 wt% of KH2PO4, with a water/cement (W/C) ratio of 0.27. The physical and mechanical properties were evaluated at three different stages: after 1, 7, and 28 days of curing. Furthermore, an exhaustive physicochemical characterization was conducted to investigate the feasibility of using it as an alternative cement. This study confirms the feasibility of formulating MPC using TUN as raw material due to the main product obtained, which is K-struvite. The use of TUN implies important economic savings and enhances sustainability criteria avoiding its management in landfills.
•It is feasible to obtain a MPC using tundish deskulling waste as a MgO source.•The presence of K-struvite formed through MPC reaction is confirmed.•The valorization of this waste enhances the circular economy.•At the end life of the developed MPC, it could be accepted in landfills. |
---|---|
ISSN: | 2213-3437 |
DOI: | 10.1016/j.jece.2023.110618 |