Loading…

Environmental fate of methomyl pesticide in river water: Kinetic study, mathematical simulations and risk assessment

Methomyl (MET) is a pesticide widely used as an acaricide with toxic effects on aquatic organisms and humans. The environmental persistence of pollutants can be determined by different routes, including photochemical transformations driven by sunlight and photoproduced reactive intermediates such as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental chemical engineering 2024-04, Vol.12 (2), p.112157, Article 112157
Main Authors: de Oliveira Sampaio Dantas, Ádila, Larrondo Portiolli, Matheus, Pinheiro de Souza, Larissa, Mendonça Silva de Jesus, Juliana, de Melo Carneiro, João Gabriel, Ramos, Bruno, Mabel Lastre-Acosta, Arlen, Carlos Silva Costa Teixeira, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-d5b2d1d3267205240647ab16cd8a6b028e294b33b4a683cc335c84cd4b46268e3
container_end_page
container_issue 2
container_start_page 112157
container_title Journal of environmental chemical engineering
container_volume 12
creator de Oliveira Sampaio Dantas, Ádila
Larrondo Portiolli, Matheus
Pinheiro de Souza, Larissa
Mendonça Silva de Jesus, Juliana
de Melo Carneiro, João Gabriel
Ramos, Bruno
Mabel Lastre-Acosta, Arlen
Carlos Silva Costa Teixeira, Antonio
description Methomyl (MET) is a pesticide widely used as an acaricide with toxic effects on aquatic organisms and humans. The environmental persistence of pollutants can be determined by different routes, including photochemical transformations driven by sunlight and photoproduced reactive intermediates such as HO•, 3CDOM* , and 1O2. Photolytic experiments were carried out under simulated solar radiation, revealing a low value of the direct photolysis quantum yield, ΦMET = (2.01 ± 0.62) × 10−4 mol Einstein−1. The second-order kinetic rate constants of the reactions between MET and HO•, 3CDOM* , and 1O2 were also measured using the competition kinetics approach; the values obtained were kMET, HO• = (1.42 ± 0.04) × 109 L mol−1 s−1, kMET,3CBBP* = (3.49 ± 0.87) × 108 L mol−1 s−1 and kMET, 1O2 = (3.36 ± 1.09) × 104 L mol−1 s−1, respectively. Kinetic mathematical simulations were used to predict the half-life and self-purification distance of MET in a river, considering phenomena as photodegradation, adsorption, biodegradation, geographical location, and water chemistry. The half-life of MET was estimated to be 82 h, with biodegradation making the largest contribution to the drop in MET concentration. The relative contribution of photochemical pathways to MET degradation in sunlit water will depend greatly on the irradiance conditions, water depth and the environmental characteristics of the water body, including the concentrations of organic matter, nitrate, nitrate and carbonate. Finally, the predicted risk coefficients, also based on QSAR models, confirmed that MET and its metabolite S-methyl-N-hydroxythioacetamidate pose a high risk to aquatic species. [Display omitted] •Reactivity with 3CDOM* and direct photolysis are the main photodegradation pathways.•Biodegradation drastically reduces the half-life of methomyl in river water.•Methomyl has a potential for bioconcentration but not for bioaccumulation.•Methomyl and its metabolite methomyl oxime pose a high risk to aquatic species.
doi_str_mv 10.1016/j.jece.2024.112157
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jece_2024_112157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213343724002872</els_id><sourcerecordid>S2213343724002872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-d5b2d1d3267205240647ab16cd8a6b028e294b33b4a683cc335c84cd4b46268e3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEhPsD3DKD6AjX007xAVN40NM4gLnKE1cLaVNpyQb2r8n1Thwwgfbkv2-th6EbihZUELlXbfowMCCESYWlDJaVmdoxhjlBRe8Ov_TX6J5jB3JsVzSUtIZSmt_cGH0A_ike9zqBHhs8QBpOw7HHu8gJmecBew8Du4AAX_nnXCP35yHPMIx7e3xFg86bSEnZ7JNdMO-z_3oI9beZmH8wjpGiHE6dI0uWt1HmP_WK_T5tP5YvRSb9-fX1eOmMKykqbBlwyy1nMmKkZIJIkWlGyqNrbVsCKuBLUXDeSO0rLkxnJemFsaKRkgma-BXiJ18TRhjDNCqXXCDDkdFiZrQqU5N6NSETp3QZdHDSQT5s4ODoKJx4A1YF8AkZUf3n_wH6FF5GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Environmental fate of methomyl pesticide in river water: Kinetic study, mathematical simulations and risk assessment</title><source>ScienceDirect Journals</source><creator>de Oliveira Sampaio Dantas, Ádila ; Larrondo Portiolli, Matheus ; Pinheiro de Souza, Larissa ; Mendonça Silva de Jesus, Juliana ; de Melo Carneiro, João Gabriel ; Ramos, Bruno ; Mabel Lastre-Acosta, Arlen ; Carlos Silva Costa Teixeira, Antonio</creator><creatorcontrib>de Oliveira Sampaio Dantas, Ádila ; Larrondo Portiolli, Matheus ; Pinheiro de Souza, Larissa ; Mendonça Silva de Jesus, Juliana ; de Melo Carneiro, João Gabriel ; Ramos, Bruno ; Mabel Lastre-Acosta, Arlen ; Carlos Silva Costa Teixeira, Antonio</creatorcontrib><description>Methomyl (MET) is a pesticide widely used as an acaricide with toxic effects on aquatic organisms and humans. The environmental persistence of pollutants can be determined by different routes, including photochemical transformations driven by sunlight and photoproduced reactive intermediates such as HO•, 3CDOM* , and 1O2. Photolytic experiments were carried out under simulated solar radiation, revealing a low value of the direct photolysis quantum yield, ΦMET = (2.01 ± 0.62) × 10−4 mol Einstein−1. The second-order kinetic rate constants of the reactions between MET and HO•, 3CDOM* , and 1O2 were also measured using the competition kinetics approach; the values obtained were kMET, HO• = (1.42 ± 0.04) × 109 L mol−1 s−1, kMET,3CBBP* = (3.49 ± 0.87) × 108 L mol−1 s−1 and kMET, 1O2 = (3.36 ± 1.09) × 104 L mol−1 s−1, respectively. Kinetic mathematical simulations were used to predict the half-life and self-purification distance of MET in a river, considering phenomena as photodegradation, adsorption, biodegradation, geographical location, and water chemistry. The half-life of MET was estimated to be 82 h, with biodegradation making the largest contribution to the drop in MET concentration. The relative contribution of photochemical pathways to MET degradation in sunlit water will depend greatly on the irradiance conditions, water depth and the environmental characteristics of the water body, including the concentrations of organic matter, nitrate, nitrate and carbonate. Finally, the predicted risk coefficients, also based on QSAR models, confirmed that MET and its metabolite S-methyl-N-hydroxythioacetamidate pose a high risk to aquatic species. [Display omitted] •Reactivity with 3CDOM* and direct photolysis are the main photodegradation pathways.•Biodegradation drastically reduces the half-life of methomyl in river water.•Methomyl has a potential for bioconcentration but not for bioaccumulation.•Methomyl and its metabolite methomyl oxime pose a high risk to aquatic species.</description><identifier>ISSN: 2213-3437</identifier><identifier>EISSN: 2213-3437</identifier><identifier>DOI: 10.1016/j.jece.2024.112157</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Photochemical modeling ; Photolysis ; Photoproduced reactive intermediates ; Predicted half-life</subject><ispartof>Journal of environmental chemical engineering, 2024-04, Vol.12 (2), p.112157, Article 112157</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-d5b2d1d3267205240647ab16cd8a6b028e294b33b4a683cc335c84cd4b46268e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>de Oliveira Sampaio Dantas, Ádila</creatorcontrib><creatorcontrib>Larrondo Portiolli, Matheus</creatorcontrib><creatorcontrib>Pinheiro de Souza, Larissa</creatorcontrib><creatorcontrib>Mendonça Silva de Jesus, Juliana</creatorcontrib><creatorcontrib>de Melo Carneiro, João Gabriel</creatorcontrib><creatorcontrib>Ramos, Bruno</creatorcontrib><creatorcontrib>Mabel Lastre-Acosta, Arlen</creatorcontrib><creatorcontrib>Carlos Silva Costa Teixeira, Antonio</creatorcontrib><title>Environmental fate of methomyl pesticide in river water: Kinetic study, mathematical simulations and risk assessment</title><title>Journal of environmental chemical engineering</title><description>Methomyl (MET) is a pesticide widely used as an acaricide with toxic effects on aquatic organisms and humans. The environmental persistence of pollutants can be determined by different routes, including photochemical transformations driven by sunlight and photoproduced reactive intermediates such as HO•, 3CDOM* , and 1O2. Photolytic experiments were carried out under simulated solar radiation, revealing a low value of the direct photolysis quantum yield, ΦMET = (2.01 ± 0.62) × 10−4 mol Einstein−1. The second-order kinetic rate constants of the reactions between MET and HO•, 3CDOM* , and 1O2 were also measured using the competition kinetics approach; the values obtained were kMET, HO• = (1.42 ± 0.04) × 109 L mol−1 s−1, kMET,3CBBP* = (3.49 ± 0.87) × 108 L mol−1 s−1 and kMET, 1O2 = (3.36 ± 1.09) × 104 L mol−1 s−1, respectively. Kinetic mathematical simulations were used to predict the half-life and self-purification distance of MET in a river, considering phenomena as photodegradation, adsorption, biodegradation, geographical location, and water chemistry. The half-life of MET was estimated to be 82 h, with biodegradation making the largest contribution to the drop in MET concentration. The relative contribution of photochemical pathways to MET degradation in sunlit water will depend greatly on the irradiance conditions, water depth and the environmental characteristics of the water body, including the concentrations of organic matter, nitrate, nitrate and carbonate. Finally, the predicted risk coefficients, also based on QSAR models, confirmed that MET and its metabolite S-methyl-N-hydroxythioacetamidate pose a high risk to aquatic species. [Display omitted] •Reactivity with 3CDOM* and direct photolysis are the main photodegradation pathways.•Biodegradation drastically reduces the half-life of methomyl in river water.•Methomyl has a potential for bioconcentration but not for bioaccumulation.•Methomyl and its metabolite methomyl oxime pose a high risk to aquatic species.</description><subject>Photochemical modeling</subject><subject>Photolysis</subject><subject>Photoproduced reactive intermediates</subject><subject>Predicted half-life</subject><issn>2213-3437</issn><issn>2213-3437</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEhPsD3DKD6AjX007xAVN40NM4gLnKE1cLaVNpyQb2r8n1Thwwgfbkv2-th6EbihZUELlXbfowMCCESYWlDJaVmdoxhjlBRe8Ov_TX6J5jB3JsVzSUtIZSmt_cGH0A_ike9zqBHhs8QBpOw7HHu8gJmecBew8Du4AAX_nnXCP35yHPMIx7e3xFg86bSEnZ7JNdMO-z_3oI9beZmH8wjpGiHE6dI0uWt1HmP_WK_T5tP5YvRSb9-fX1eOmMKykqbBlwyy1nMmKkZIJIkWlGyqNrbVsCKuBLUXDeSO0rLkxnJemFsaKRkgma-BXiJ18TRhjDNCqXXCDDkdFiZrQqU5N6NSETp3QZdHDSQT5s4ODoKJx4A1YF8AkZUf3n_wH6FF5GQ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>de Oliveira Sampaio Dantas, Ádila</creator><creator>Larrondo Portiolli, Matheus</creator><creator>Pinheiro de Souza, Larissa</creator><creator>Mendonça Silva de Jesus, Juliana</creator><creator>de Melo Carneiro, João Gabriel</creator><creator>Ramos, Bruno</creator><creator>Mabel Lastre-Acosta, Arlen</creator><creator>Carlos Silva Costa Teixeira, Antonio</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202404</creationdate><title>Environmental fate of methomyl pesticide in river water: Kinetic study, mathematical simulations and risk assessment</title><author>de Oliveira Sampaio Dantas, Ádila ; Larrondo Portiolli, Matheus ; Pinheiro de Souza, Larissa ; Mendonça Silva de Jesus, Juliana ; de Melo Carneiro, João Gabriel ; Ramos, Bruno ; Mabel Lastre-Acosta, Arlen ; Carlos Silva Costa Teixeira, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-d5b2d1d3267205240647ab16cd8a6b028e294b33b4a683cc335c84cd4b46268e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Photochemical modeling</topic><topic>Photolysis</topic><topic>Photoproduced reactive intermediates</topic><topic>Predicted half-life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira Sampaio Dantas, Ádila</creatorcontrib><creatorcontrib>Larrondo Portiolli, Matheus</creatorcontrib><creatorcontrib>Pinheiro de Souza, Larissa</creatorcontrib><creatorcontrib>Mendonça Silva de Jesus, Juliana</creatorcontrib><creatorcontrib>de Melo Carneiro, João Gabriel</creatorcontrib><creatorcontrib>Ramos, Bruno</creatorcontrib><creatorcontrib>Mabel Lastre-Acosta, Arlen</creatorcontrib><creatorcontrib>Carlos Silva Costa Teixeira, Antonio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of environmental chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira Sampaio Dantas, Ádila</au><au>Larrondo Portiolli, Matheus</au><au>Pinheiro de Souza, Larissa</au><au>Mendonça Silva de Jesus, Juliana</au><au>de Melo Carneiro, João Gabriel</au><au>Ramos, Bruno</au><au>Mabel Lastre-Acosta, Arlen</au><au>Carlos Silva Costa Teixeira, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental fate of methomyl pesticide in river water: Kinetic study, mathematical simulations and risk assessment</atitle><jtitle>Journal of environmental chemical engineering</jtitle><date>2024-04</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>112157</spage><pages>112157-</pages><artnum>112157</artnum><issn>2213-3437</issn><eissn>2213-3437</eissn><abstract>Methomyl (MET) is a pesticide widely used as an acaricide with toxic effects on aquatic organisms and humans. The environmental persistence of pollutants can be determined by different routes, including photochemical transformations driven by sunlight and photoproduced reactive intermediates such as HO•, 3CDOM* , and 1O2. Photolytic experiments were carried out under simulated solar radiation, revealing a low value of the direct photolysis quantum yield, ΦMET = (2.01 ± 0.62) × 10−4 mol Einstein−1. The second-order kinetic rate constants of the reactions between MET and HO•, 3CDOM* , and 1O2 were also measured using the competition kinetics approach; the values obtained were kMET, HO• = (1.42 ± 0.04) × 109 L mol−1 s−1, kMET,3CBBP* = (3.49 ± 0.87) × 108 L mol−1 s−1 and kMET, 1O2 = (3.36 ± 1.09) × 104 L mol−1 s−1, respectively. Kinetic mathematical simulations were used to predict the half-life and self-purification distance of MET in a river, considering phenomena as photodegradation, adsorption, biodegradation, geographical location, and water chemistry. The half-life of MET was estimated to be 82 h, with biodegradation making the largest contribution to the drop in MET concentration. The relative contribution of photochemical pathways to MET degradation in sunlit water will depend greatly on the irradiance conditions, water depth and the environmental characteristics of the water body, including the concentrations of organic matter, nitrate, nitrate and carbonate. Finally, the predicted risk coefficients, also based on QSAR models, confirmed that MET and its metabolite S-methyl-N-hydroxythioacetamidate pose a high risk to aquatic species. [Display omitted] •Reactivity with 3CDOM* and direct photolysis are the main photodegradation pathways.•Biodegradation drastically reduces the half-life of methomyl in river water.•Methomyl has a potential for bioconcentration but not for bioaccumulation.•Methomyl and its metabolite methomyl oxime pose a high risk to aquatic species.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jece.2024.112157</doi></addata></record>
fulltext fulltext
identifier ISSN: 2213-3437
ispartof Journal of environmental chemical engineering, 2024-04, Vol.12 (2), p.112157, Article 112157
issn 2213-3437
2213-3437
language eng
recordid cdi_crossref_primary_10_1016_j_jece_2024_112157
source ScienceDirect Journals
subjects Photochemical modeling
Photolysis
Photoproduced reactive intermediates
Predicted half-life
title Environmental fate of methomyl pesticide in river water: Kinetic study, mathematical simulations and risk assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20fate%20of%20methomyl%20pesticide%20in%20river%20water:%20Kinetic%20study,%20mathematical%20simulations%20and%20risk%20assessment&rft.jtitle=Journal%20of%20environmental%20chemical%20engineering&rft.au=de%20Oliveira%20Sampaio%20Dantas,%20%C3%81dila&rft.date=2024-04&rft.volume=12&rft.issue=2&rft.spage=112157&rft.pages=112157-&rft.artnum=112157&rft.issn=2213-3437&rft.eissn=2213-3437&rft_id=info:doi/10.1016/j.jece.2024.112157&rft_dat=%3Celsevier_cross%3ES2213343724002872%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-d5b2d1d3267205240647ab16cd8a6b028e294b33b4a683cc335c84cd4b46268e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true