Loading…
Organic dyes based on triphenylamine for dye-sensitized solar cells:Structure–property relationships
Three new organic dyes based on triphenylamine with a structure of A-D-A-D-A(D1),A-D-A(D2) and D-A(D3) were designed,theoretically calculated and synthesized for dye-sensitized solar cells.Dye D1 exhibits a broader absorption than D2 and D3,due to the intramolecular charge transfer between the donor...
Saved in:
Published in: | Journal of energy chemistry 2016-07, Vol.25 (4), p.615-620 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three new organic dyes based on triphenylamine with a structure of A-D-A-D-A(D1),A-D-A(D2) and D-A(D3) were designed,theoretically calculated and synthesized for dye-sensitized solar cells.Dye D1 exhibits a broader absorption than D2 and D3,due to the intramolecular charge transfer between the donor triphenylamine and the acceptor benzothiadiazole.Dye D1 exhibits a lower HOMO and a lower LUMO than D2 and D3 due to the electron-withdrawing benzothiadiazole.The number of anchoring group cyanoacrylic acid has no obvious influence on absorption and energy levels of D2 and D3.The LUMO of D1 locates on benzothiadiazole rather than cyanoacrylic acid anchoring groups,while the LUMOs of D2 and D3 are localized on cyanoacrylic acid.D2 and D3 give higher short-circuit current density than D1.D3 with one anchoring group gives the highest open-circuit voltage.Consequently,the D3-based device gives the highest efficiency. |
---|---|
ISSN: | 2095-4956 |
DOI: | 10.1016/j.jechem.2016.03.007 |