Loading…

Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study

The electrochemical activity of hydroxylamine on polycrystalline Pt in acidic media has been characterized using cyclic voltammetry, on-line differential electrochemical mass spectrometry (DEMS) and in situ FTIR. The electrochemistry of hydroxylamine (HAM) is essentially controlled by other species...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2004-05, Vol.566 (1), p.53-62
Main Authors: Rosca, Victor, Beltramo, Guillermo L, Koper, Marc T.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrochemical activity of hydroxylamine on polycrystalline Pt in acidic media has been characterized using cyclic voltammetry, on-line differential electrochemical mass spectrometry (DEMS) and in situ FTIR. The electrochemistry of hydroxylamine (HAM) is essentially controlled by other species that interact strongly with the electrode surface. Therefore, quite moderate current densities, both in oxidation and reduction, are observed in a wide potential window between ca 0 and 1 V. The HAM electroreduction is a slow process and is masked by the H upd. No formation of gaseous products was detected in this region; hence, ammonia must be the main product of HAM reduction. The HAM electro-oxidation is strongly influenced by the adsorption of its products, as well as their chemical transformations in solution. The key intermediate in HAM oxidation is NO, based both on voltammetric and spectroscopic evidence. Nitric oxide forms an adsorbed layer, stable over a wide potential region between ca. 0.55 and 0.75 V. At higher potentials NO ads is oxidized to form (adsorbed) HNO 2. At potentials above ca. 0.9 V the accumulation of HNO 2 in solution, accompanied by its partial oxidation to NO 2, is postulated. N 2O formation, observed in the potential region between ca. 0.5 and 1 V, has multiple sources. The most important source of N 2O is a homogeneous reaction between HNO 2 and HAM. The Tafel slope analysis suggests the second electron transfer to be the rate-determining step in HAM oxidation to NO ads. A tentative mechanism for this reaction is proposed.
ISSN:1572-6657
1873-2569
DOI:10.1016/j.jelechem.2003.11.011