Loading…

UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries

[Display omitted] •CPGCE synthesizedviathiol-ene click-reaction by photopolymerization.•CPGCE electrolyte exhibits Li+ conductivity of 4.4 × 10−4 S/cm, with a wide potential stability window of >4.2 V at 25 °C.•CPGCE provides higher stability and smooth Li-ion mobility with superior interfacial c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2024-09, Vol.968, p.118492, Article 118492
Main Authors: Swathi, Pandurangan, Panneerselvam, Thamayanthi, Sreejith, O.V., Murugan, Ramaswamy, Ramaswamy, Arun Prasath
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c189t-db9e85c5bd545bc5905139063568576f5838d19f5639ac8fc6916023b7ec66573
container_end_page
container_issue
container_start_page 118492
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 968
creator Swathi, Pandurangan
Panneerselvam, Thamayanthi
Sreejith, O.V.
Murugan, Ramaswamy
Ramaswamy, Arun Prasath
description [Display omitted] •CPGCE synthesizedviathiol-ene click-reaction by photopolymerization.•CPGCE electrolyte exhibits Li+ conductivity of 4.4 × 10−4 S/cm, with a wide potential stability window of >4.2 V at 25 °C.•CPGCE provides higher stability and smooth Li-ion mobility with superior interfacial contact between the electrodes and electrolyte over 1000 cycles.•Full cell Li|CPGCE|LFP provides higher discharge capacity of 160–155 mAh g−1 of 96 % Coulombic efficiency. The next-generation electric vehicles heavily rely on high-energy–density lithium metal batteries with enhanced safety. Replacing liquid electrolytes with solid-state polymer electrolytes offers superior protection, high flexibility, and stability. However, inadequate ionic conductivity and poor compatibility at the interfaces with the electrodes hinder the practical application of solid-state electrolytes. In this work, we developed a polyethylene glycol-based, highly cross-linked polymer electrolyte with a garnet-type, fast Li+ conductive Li6.2Al0.24La3Zr2O12 (Al-LLZO) filler. The Al-LLZO filler was incorporated into a cross-linking functional polymeric matrix of polyethylene glycol diacrylate, pentaerythritol tetrakis (3-mercaptopropionate), and lithium perchlorate salt. The cross-linked polymer garnet composite electrolyte (CPGCE) was prepared via UV-induced photo-polymerization. The resulting CPGCE exhibits superior free-standing flexibility, a desired ionic conductivity of 4.4 × 10−4 S cm−1, and a wide potential window up to 4.2 V. The Li|CPGCE|Li symmetric cell underwent stripping and plating at varying current densities of 0.05 to 0.3 mA cm−2, displaying a low overpotential range from ±0.02 V to ±0.08 V over 500 cycles. Similarly, the as-cycled Li|CPGCE|Li showed excellent stripping and plating performance at 0.1 mA cm−2 for 500 cycles at 60 °C. The incorporation of the Al-LLZO nanofiller provided active sites with continuous Li+ conducting pathways, suppressing the growth of dead lithium dendrites. The Li|CPGCE|LiFePO₄ full cell exhibited a discharge capacity of 155 mAh g−1 at a rate of 0.1C, with a coulombic efficiency of 96 % over 50 cycles at 25 °C. This work offers a straightforward and convenient approach to creating highly durable polymer composite electrolytes with enhanced interfacial stability, advancing the implementation of all-solid-state lithium metal batteries.
doi_str_mv 10.1016/j.jelechem.2024.118492
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jelechem_2024_118492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665724004703</els_id><sourcerecordid>S1572665724004703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-db9e85c5bd545bc5905139063568576f5838d19f5639ac8fc6916023b7ec66573</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRb0AifL4BeQfSLGT2rF3oIqXVIkNZWs5zqRxcB6yTav-PQ6FNasZ6eremXsQuqVkSQnld92yAwemhX6Zk3y1pFSsZH6GFpSVecY5Ky_QZQgdIbkQNF-gw_YDGz-GkDk7fEKNW7tr3RGHqCsHeBrdsQePd9oPELEZ-2kMNgKer0Sf1LQfbGyx7Sc_7lOAHSL4qdUBcDN67JJov3rcQ9QOVzom1UK4RueNdgFufucV2j49vq9fss3b8-v6YZMZKmTM6kqCYIZVNVuxyjBJGC0k4QXjgpW8YaIQNZUN44XURjSGS8pJXlQlmLltcYX4KfenpIdGTd722h8VJWpGpjr1h0zNyNQJWTLen4yQvttb8CoYC4OB2vpUXdWj_S_iG7upfR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries</title><source>ScienceDirect Freedom Collection</source><creator>Swathi, Pandurangan ; Panneerselvam, Thamayanthi ; Sreejith, O.V. ; Murugan, Ramaswamy ; Ramaswamy, Arun Prasath</creator><creatorcontrib>Swathi, Pandurangan ; Panneerselvam, Thamayanthi ; Sreejith, O.V. ; Murugan, Ramaswamy ; Ramaswamy, Arun Prasath</creatorcontrib><description>[Display omitted] •CPGCE synthesizedviathiol-ene click-reaction by photopolymerization.•CPGCE electrolyte exhibits Li+ conductivity of 4.4 × 10−4 S/cm, with a wide potential stability window of &gt;4.2 V at 25 °C.•CPGCE provides higher stability and smooth Li-ion mobility with superior interfacial contact between the electrodes and electrolyte over 1000 cycles.•Full cell Li|CPGCE|LFP provides higher discharge capacity of 160–155 mAh g−1 of 96 % Coulombic efficiency. The next-generation electric vehicles heavily rely on high-energy–density lithium metal batteries with enhanced safety. Replacing liquid electrolytes with solid-state polymer electrolytes offers superior protection, high flexibility, and stability. However, inadequate ionic conductivity and poor compatibility at the interfaces with the electrodes hinder the practical application of solid-state electrolytes. In this work, we developed a polyethylene glycol-based, highly cross-linked polymer electrolyte with a garnet-type, fast Li+ conductive Li6.2Al0.24La3Zr2O12 (Al-LLZO) filler. The Al-LLZO filler was incorporated into a cross-linking functional polymeric matrix of polyethylene glycol diacrylate, pentaerythritol tetrakis (3-mercaptopropionate), and lithium perchlorate salt. The cross-linked polymer garnet composite electrolyte (CPGCE) was prepared via UV-induced photo-polymerization. The resulting CPGCE exhibits superior free-standing flexibility, a desired ionic conductivity of 4.4 × 10−4 S cm−1, and a wide potential window up to 4.2 V. The Li|CPGCE|Li symmetric cell underwent stripping and plating at varying current densities of 0.05 to 0.3 mA cm−2, displaying a low overpotential range from ±0.02 V to ±0.08 V over 500 cycles. Similarly, the as-cycled Li|CPGCE|Li showed excellent stripping and plating performance at 0.1 mA cm−2 for 500 cycles at 60 °C. The incorporation of the Al-LLZO nanofiller provided active sites with continuous Li+ conducting pathways, suppressing the growth of dead lithium dendrites. The Li|CPGCE|LiFePO₄ full cell exhibited a discharge capacity of 155 mAh g−1 at a rate of 0.1C, with a coulombic efficiency of 96 % over 50 cycles at 25 °C. This work offers a straightforward and convenient approach to creating highly durable polymer composite electrolytes with enhanced interfacial stability, advancing the implementation of all-solid-state lithium metal batteries.</description><identifier>ISSN: 1572-6657</identifier><identifier>DOI: 10.1016/j.jelechem.2024.118492</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Al-LLZO garnet ; Cross-linking ; High stability ; Photo polymerization ; Solid state electrolyte</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2024-09, Vol.968, p.118492, Article 118492</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-db9e85c5bd545bc5905139063568576f5838d19f5639ac8fc6916023b7ec66573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swathi, Pandurangan</creatorcontrib><creatorcontrib>Panneerselvam, Thamayanthi</creatorcontrib><creatorcontrib>Sreejith, O.V.</creatorcontrib><creatorcontrib>Murugan, Ramaswamy</creatorcontrib><creatorcontrib>Ramaswamy, Arun Prasath</creatorcontrib><title>UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>[Display omitted] •CPGCE synthesizedviathiol-ene click-reaction by photopolymerization.•CPGCE electrolyte exhibits Li+ conductivity of 4.4 × 10−4 S/cm, with a wide potential stability window of &gt;4.2 V at 25 °C.•CPGCE provides higher stability and smooth Li-ion mobility with superior interfacial contact between the electrodes and electrolyte over 1000 cycles.•Full cell Li|CPGCE|LFP provides higher discharge capacity of 160–155 mAh g−1 of 96 % Coulombic efficiency. The next-generation electric vehicles heavily rely on high-energy–density lithium metal batteries with enhanced safety. Replacing liquid electrolytes with solid-state polymer electrolytes offers superior protection, high flexibility, and stability. However, inadequate ionic conductivity and poor compatibility at the interfaces with the electrodes hinder the practical application of solid-state electrolytes. In this work, we developed a polyethylene glycol-based, highly cross-linked polymer electrolyte with a garnet-type, fast Li+ conductive Li6.2Al0.24La3Zr2O12 (Al-LLZO) filler. The Al-LLZO filler was incorporated into a cross-linking functional polymeric matrix of polyethylene glycol diacrylate, pentaerythritol tetrakis (3-mercaptopropionate), and lithium perchlorate salt. The cross-linked polymer garnet composite electrolyte (CPGCE) was prepared via UV-induced photo-polymerization. The resulting CPGCE exhibits superior free-standing flexibility, a desired ionic conductivity of 4.4 × 10−4 S cm−1, and a wide potential window up to 4.2 V. The Li|CPGCE|Li symmetric cell underwent stripping and plating at varying current densities of 0.05 to 0.3 mA cm−2, displaying a low overpotential range from ±0.02 V to ±0.08 V over 500 cycles. Similarly, the as-cycled Li|CPGCE|Li showed excellent stripping and plating performance at 0.1 mA cm−2 for 500 cycles at 60 °C. The incorporation of the Al-LLZO nanofiller provided active sites with continuous Li+ conducting pathways, suppressing the growth of dead lithium dendrites. The Li|CPGCE|LiFePO₄ full cell exhibited a discharge capacity of 155 mAh g−1 at a rate of 0.1C, with a coulombic efficiency of 96 % over 50 cycles at 25 °C. This work offers a straightforward and convenient approach to creating highly durable polymer composite electrolytes with enhanced interfacial stability, advancing the implementation of all-solid-state lithium metal batteries.</description><subject>Al-LLZO garnet</subject><subject>Cross-linking</subject><subject>High stability</subject><subject>Photo polymerization</subject><subject>Solid state electrolyte</subject><issn>1572-6657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRb0AifL4BeQfSLGT2rF3oIqXVIkNZWs5zqRxcB6yTav-PQ6FNasZ6eremXsQuqVkSQnld92yAwemhX6Zk3y1pFSsZH6GFpSVecY5Ky_QZQgdIbkQNF-gw_YDGz-GkDk7fEKNW7tr3RGHqCsHeBrdsQePd9oPELEZ-2kMNgKer0Sf1LQfbGyx7Sc_7lOAHSL4qdUBcDN67JJov3rcQ9QOVzom1UK4RueNdgFufucV2j49vq9fss3b8-v6YZMZKmTM6kqCYIZVNVuxyjBJGC0k4QXjgpW8YaIQNZUN44XURjSGS8pJXlQlmLltcYX4KfenpIdGTd722h8VJWpGpjr1h0zNyNQJWTLen4yQvttb8CoYC4OB2vpUXdWj_S_iG7upfR8</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Swathi, Pandurangan</creator><creator>Panneerselvam, Thamayanthi</creator><creator>Sreejith, O.V.</creator><creator>Murugan, Ramaswamy</creator><creator>Ramaswamy, Arun Prasath</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries</title><author>Swathi, Pandurangan ; Panneerselvam, Thamayanthi ; Sreejith, O.V. ; Murugan, Ramaswamy ; Ramaswamy, Arun Prasath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-db9e85c5bd545bc5905139063568576f5838d19f5639ac8fc6916023b7ec66573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Al-LLZO garnet</topic><topic>Cross-linking</topic><topic>High stability</topic><topic>Photo polymerization</topic><topic>Solid state electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swathi, Pandurangan</creatorcontrib><creatorcontrib>Panneerselvam, Thamayanthi</creatorcontrib><creatorcontrib>Sreejith, O.V.</creatorcontrib><creatorcontrib>Murugan, Ramaswamy</creatorcontrib><creatorcontrib>Ramaswamy, Arun Prasath</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swathi, Pandurangan</au><au>Panneerselvam, Thamayanthi</au><au>Sreejith, O.V.</au><au>Murugan, Ramaswamy</au><au>Ramaswamy, Arun Prasath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>968</volume><spage>118492</spage><pages>118492-</pages><artnum>118492</artnum><issn>1572-6657</issn><abstract>[Display omitted] •CPGCE synthesizedviathiol-ene click-reaction by photopolymerization.•CPGCE electrolyte exhibits Li+ conductivity of 4.4 × 10−4 S/cm, with a wide potential stability window of &gt;4.2 V at 25 °C.•CPGCE provides higher stability and smooth Li-ion mobility with superior interfacial contact between the electrodes and electrolyte over 1000 cycles.•Full cell Li|CPGCE|LFP provides higher discharge capacity of 160–155 mAh g−1 of 96 % Coulombic efficiency. The next-generation electric vehicles heavily rely on high-energy–density lithium metal batteries with enhanced safety. Replacing liquid electrolytes with solid-state polymer electrolytes offers superior protection, high flexibility, and stability. However, inadequate ionic conductivity and poor compatibility at the interfaces with the electrodes hinder the practical application of solid-state electrolytes. In this work, we developed a polyethylene glycol-based, highly cross-linked polymer electrolyte with a garnet-type, fast Li+ conductive Li6.2Al0.24La3Zr2O12 (Al-LLZO) filler. The Al-LLZO filler was incorporated into a cross-linking functional polymeric matrix of polyethylene glycol diacrylate, pentaerythritol tetrakis (3-mercaptopropionate), and lithium perchlorate salt. The cross-linked polymer garnet composite electrolyte (CPGCE) was prepared via UV-induced photo-polymerization. The resulting CPGCE exhibits superior free-standing flexibility, a desired ionic conductivity of 4.4 × 10−4 S cm−1, and a wide potential window up to 4.2 V. The Li|CPGCE|Li symmetric cell underwent stripping and plating at varying current densities of 0.05 to 0.3 mA cm−2, displaying a low overpotential range from ±0.02 V to ±0.08 V over 500 cycles. Similarly, the as-cycled Li|CPGCE|Li showed excellent stripping and plating performance at 0.1 mA cm−2 for 500 cycles at 60 °C. The incorporation of the Al-LLZO nanofiller provided active sites with continuous Li+ conducting pathways, suppressing the growth of dead lithium dendrites. The Li|CPGCE|LiFePO₄ full cell exhibited a discharge capacity of 155 mAh g−1 at a rate of 0.1C, with a coulombic efficiency of 96 % over 50 cycles at 25 °C. This work offers a straightforward and convenient approach to creating highly durable polymer composite electrolytes with enhanced interfacial stability, advancing the implementation of all-solid-state lithium metal batteries.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2024.118492</doi></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2024-09, Vol.968, p.118492, Article 118492
issn 1572-6657
language eng
recordid cdi_crossref_primary_10_1016_j_jelechem_2024_118492
source ScienceDirect Freedom Collection
subjects Al-LLZO garnet
Cross-linking
High stability
Photo polymerization
Solid state electrolyte
title UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UV%20cross-linked%20highly%20stable%20polymer%20garnet%20composite%20electrolyte%20with%20improved%20interphase%20for%20lithium%20metal%20batteries&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Swathi,%20Pandurangan&rft.date=2024-09-01&rft.volume=968&rft.spage=118492&rft.pages=118492-&rft.artnum=118492&rft.issn=1572-6657&rft_id=info:doi/10.1016/j.jelechem.2024.118492&rft_dat=%3Celsevier_cross%3ES1572665724004703%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c189t-db9e85c5bd545bc5905139063568576f5838d19f5639ac8fc6916023b7ec66573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true