Loading…
Bayesian spatial modelling of terrestrial radiation in Switzerland
The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airbo...
Saved in:
Published in: | Journal of environmental radioactivity 2021-07, Vol.233, p.106571, Article 106571 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3 |
container_end_page | |
container_issue | |
container_start_page | 106571 |
container_title | Journal of environmental radioactivity |
container_volume | 233 |
creator | Folly, Christophe L. Konstantinoudis, Garyfallos Mazzei-Abba, Antonella Kreis, Christian Bucher, Benno Furrer, Reinhard Spycher, Ben D. |
description | The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination.
•We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub. |
doi_str_mv | 10.1016/j.jenvrad.2021.106571 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jenvrad_2021_106571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0265931X21000436</els_id><sourcerecordid>2551945908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonR2Fr9CZo9etkK7LLAyWjjV9LEg5p4IywMhs12t8K2pv56aVq9eiIZnpl35kHonOApwaS6aqYNdOug7ZRiSlKtYpwcoDERXOaEY3yIxphWLJcFeR-hkxgbjFNd0GM0KgrOMcd0jG5v9Qai110Wl3rwus0WvYW29d1H1rtsgBAgDmH7kbJ8Qvou81328uWHbwit7uwpOnK6jXC2fyfo7f7udfaYz58fnmY389yUJRtyXjgBhgtGS8GctZWrnbDclJaX0lFNucXaWU1lLRzWrJBUWlpwEBJqqU0xQZe7ucvQf67SVmrho0m76g76VVSUMSJLJrFIKNuhJvQxBnBqGfxCh40iWG31qUbt9amtPrXTl_ou9hGregH2r-vXVwKudwCkQ9cegorGQ2fA-gBmULb3_0T8AEtWhJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551945908</pqid></control><display><type>article</type><title>Bayesian spatial modelling of terrestrial radiation in Switzerland</title><source>ScienceDirect Journals</source><creator>Folly, Christophe L. ; Konstantinoudis, Garyfallos ; Mazzei-Abba, Antonella ; Kreis, Christian ; Bucher, Benno ; Furrer, Reinhard ; Spycher, Ben D.</creator><creatorcontrib>Folly, Christophe L. ; Konstantinoudis, Garyfallos ; Mazzei-Abba, Antonella ; Kreis, Christian ; Bucher, Benno ; Furrer, Reinhard ; Spycher, Ben D.</creatorcontrib><description>The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination.
•We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.</description><identifier>ISSN: 0265-931X</identifier><identifier>EISSN: 1879-1700</identifier><identifier>DOI: 10.1016/j.jenvrad.2021.106571</identifier><identifier>PMID: 33770702</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bayes Theorem ; Bayesian theory ; exposure assessment ; Gaussian Markov random fields ; geographical variation ; Low-dose ionising radiation ; Natural background radiation ; Radiation Monitoring ; radioactivity ; Spatial statistics ; Stochastic partial differential equation ; Switzerland ; terrestrial radiation</subject><ispartof>Journal of environmental radioactivity, 2021-07, Vol.233, p.106571, Article 106571</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</citedby><cites>FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</cites><orcidid>0000-0001-5273-1954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Folly, Christophe L.</creatorcontrib><creatorcontrib>Konstantinoudis, Garyfallos</creatorcontrib><creatorcontrib>Mazzei-Abba, Antonella</creatorcontrib><creatorcontrib>Kreis, Christian</creatorcontrib><creatorcontrib>Bucher, Benno</creatorcontrib><creatorcontrib>Furrer, Reinhard</creatorcontrib><creatorcontrib>Spycher, Ben D.</creatorcontrib><title>Bayesian spatial modelling of terrestrial radiation in Switzerland</title><title>Journal of environmental radioactivity</title><addtitle>J Environ Radioact</addtitle><description>The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination.
•We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.</description><subject>Bayes Theorem</subject><subject>Bayesian theory</subject><subject>exposure assessment</subject><subject>Gaussian Markov random fields</subject><subject>geographical variation</subject><subject>Low-dose ionising radiation</subject><subject>Natural background radiation</subject><subject>Radiation Monitoring</subject><subject>radioactivity</subject><subject>Spatial statistics</subject><subject>Stochastic partial differential equation</subject><subject>Switzerland</subject><subject>terrestrial radiation</subject><issn>0265-931X</issn><issn>1879-1700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAyEQhonR2Fr9CZo9etkK7LLAyWjjV9LEg5p4IywMhs12t8K2pv56aVq9eiIZnpl35kHonOApwaS6aqYNdOug7ZRiSlKtYpwcoDERXOaEY3yIxphWLJcFeR-hkxgbjFNd0GM0KgrOMcd0jG5v9Qai110Wl3rwus0WvYW29d1H1rtsgBAgDmH7kbJ8Qvou81328uWHbwit7uwpOnK6jXC2fyfo7f7udfaYz58fnmY389yUJRtyXjgBhgtGS8GctZWrnbDclJaX0lFNucXaWU1lLRzWrJBUWlpwEBJqqU0xQZe7ucvQf67SVmrho0m76g76VVSUMSJLJrFIKNuhJvQxBnBqGfxCh40iWG31qUbt9amtPrXTl_ou9hGregH2r-vXVwKudwCkQ9cegorGQ2fA-gBmULb3_0T8AEtWhJE</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Folly, Christophe L.</creator><creator>Konstantinoudis, Garyfallos</creator><creator>Mazzei-Abba, Antonella</creator><creator>Kreis, Christian</creator><creator>Bucher, Benno</creator><creator>Furrer, Reinhard</creator><creator>Spycher, Ben D.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5273-1954</orcidid></search><sort><creationdate>202107</creationdate><title>Bayesian spatial modelling of terrestrial radiation in Switzerland</title><author>Folly, Christophe L. ; Konstantinoudis, Garyfallos ; Mazzei-Abba, Antonella ; Kreis, Christian ; Bucher, Benno ; Furrer, Reinhard ; Spycher, Ben D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayes Theorem</topic><topic>Bayesian theory</topic><topic>exposure assessment</topic><topic>Gaussian Markov random fields</topic><topic>geographical variation</topic><topic>Low-dose ionising radiation</topic><topic>Natural background radiation</topic><topic>Radiation Monitoring</topic><topic>radioactivity</topic><topic>Spatial statistics</topic><topic>Stochastic partial differential equation</topic><topic>Switzerland</topic><topic>terrestrial radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folly, Christophe L.</creatorcontrib><creatorcontrib>Konstantinoudis, Garyfallos</creatorcontrib><creatorcontrib>Mazzei-Abba, Antonella</creatorcontrib><creatorcontrib>Kreis, Christian</creatorcontrib><creatorcontrib>Bucher, Benno</creatorcontrib><creatorcontrib>Furrer, Reinhard</creatorcontrib><creatorcontrib>Spycher, Ben D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of environmental radioactivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folly, Christophe L.</au><au>Konstantinoudis, Garyfallos</au><au>Mazzei-Abba, Antonella</au><au>Kreis, Christian</au><au>Bucher, Benno</au><au>Furrer, Reinhard</au><au>Spycher, Ben D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian spatial modelling of terrestrial radiation in Switzerland</atitle><jtitle>Journal of environmental radioactivity</jtitle><addtitle>J Environ Radioact</addtitle><date>2021-07</date><risdate>2021</risdate><volume>233</volume><spage>106571</spage><pages>106571-</pages><artnum>106571</artnum><issn>0265-931X</issn><eissn>1879-1700</eissn><abstract>The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination.
•We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33770702</pmid><doi>10.1016/j.jenvrad.2021.106571</doi><orcidid>https://orcid.org/0000-0001-5273-1954</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-931X |
ispartof | Journal of environmental radioactivity, 2021-07, Vol.233, p.106571, Article 106571 |
issn | 0265-931X 1879-1700 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jenvrad_2021_106571 |
source | ScienceDirect Journals |
subjects | Bayes Theorem Bayesian theory exposure assessment Gaussian Markov random fields geographical variation Low-dose ionising radiation Natural background radiation Radiation Monitoring radioactivity Spatial statistics Stochastic partial differential equation Switzerland terrestrial radiation |
title | Bayesian spatial modelling of terrestrial radiation in Switzerland |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20spatial%20modelling%20of%20terrestrial%20radiation%20in%20Switzerland&rft.jtitle=Journal%20of%20environmental%20radioactivity&rft.au=Folly,%20Christophe%20L.&rft.date=2021-07&rft.volume=233&rft.spage=106571&rft.pages=106571-&rft.artnum=106571&rft.issn=0265-931X&rft.eissn=1879-1700&rft_id=info:doi/10.1016/j.jenvrad.2021.106571&rft_dat=%3Cproquest_cross%3E2551945908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551945908&rft_id=info:pmid/33770702&rfr_iscdi=true |