Loading…

Bayesian spatial modelling of terrestrial radiation in Switzerland

The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airbo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental radioactivity 2021-07, Vol.233, p.106571, Article 106571
Main Authors: Folly, Christophe L., Konstantinoudis, Garyfallos, Mazzei-Abba, Antonella, Kreis, Christian, Bucher, Benno, Furrer, Reinhard, Spycher, Ben D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3
cites cdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3
container_end_page
container_issue
container_start_page 106571
container_title Journal of environmental radioactivity
container_volume 233
creator Folly, Christophe L.
Konstantinoudis, Garyfallos
Mazzei-Abba, Antonella
Kreis, Christian
Bucher, Benno
Furrer, Reinhard
Spycher, Ben D.
description The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination. •We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.
doi_str_mv 10.1016/j.jenvrad.2021.106571
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jenvrad_2021_106571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0265931X21000436</els_id><sourcerecordid>2551945908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonR2Fr9CZo9etkK7LLAyWjjV9LEg5p4IywMhs12t8K2pv56aVq9eiIZnpl35kHonOApwaS6aqYNdOug7ZRiSlKtYpwcoDERXOaEY3yIxphWLJcFeR-hkxgbjFNd0GM0KgrOMcd0jG5v9Qai110Wl3rwus0WvYW29d1H1rtsgBAgDmH7kbJ8Qvou81328uWHbwit7uwpOnK6jXC2fyfo7f7udfaYz58fnmY389yUJRtyXjgBhgtGS8GctZWrnbDclJaX0lFNucXaWU1lLRzWrJBUWlpwEBJqqU0xQZe7ucvQf67SVmrho0m76g76VVSUMSJLJrFIKNuhJvQxBnBqGfxCh40iWG31qUbt9amtPrXTl_ou9hGregH2r-vXVwKudwCkQ9cegorGQ2fA-gBmULb3_0T8AEtWhJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551945908</pqid></control><display><type>article</type><title>Bayesian spatial modelling of terrestrial radiation in Switzerland</title><source>ScienceDirect Journals</source><creator>Folly, Christophe L. ; Konstantinoudis, Garyfallos ; Mazzei-Abba, Antonella ; Kreis, Christian ; Bucher, Benno ; Furrer, Reinhard ; Spycher, Ben D.</creator><creatorcontrib>Folly, Christophe L. ; Konstantinoudis, Garyfallos ; Mazzei-Abba, Antonella ; Kreis, Christian ; Bucher, Benno ; Furrer, Reinhard ; Spycher, Ben D.</creatorcontrib><description>The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination. •We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.</description><identifier>ISSN: 0265-931X</identifier><identifier>EISSN: 1879-1700</identifier><identifier>DOI: 10.1016/j.jenvrad.2021.106571</identifier><identifier>PMID: 33770702</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bayes Theorem ; Bayesian theory ; exposure assessment ; Gaussian Markov random fields ; geographical variation ; Low-dose ionising radiation ; Natural background radiation ; Radiation Monitoring ; radioactivity ; Spatial statistics ; Stochastic partial differential equation ; Switzerland ; terrestrial radiation</subject><ispartof>Journal of environmental radioactivity, 2021-07, Vol.233, p.106571, Article 106571</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</citedby><cites>FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</cites><orcidid>0000-0001-5273-1954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Folly, Christophe L.</creatorcontrib><creatorcontrib>Konstantinoudis, Garyfallos</creatorcontrib><creatorcontrib>Mazzei-Abba, Antonella</creatorcontrib><creatorcontrib>Kreis, Christian</creatorcontrib><creatorcontrib>Bucher, Benno</creatorcontrib><creatorcontrib>Furrer, Reinhard</creatorcontrib><creatorcontrib>Spycher, Ben D.</creatorcontrib><title>Bayesian spatial modelling of terrestrial radiation in Switzerland</title><title>Journal of environmental radioactivity</title><addtitle>J Environ Radioact</addtitle><description>The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination. •We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.</description><subject>Bayes Theorem</subject><subject>Bayesian theory</subject><subject>exposure assessment</subject><subject>Gaussian Markov random fields</subject><subject>geographical variation</subject><subject>Low-dose ionising radiation</subject><subject>Natural background radiation</subject><subject>Radiation Monitoring</subject><subject>radioactivity</subject><subject>Spatial statistics</subject><subject>Stochastic partial differential equation</subject><subject>Switzerland</subject><subject>terrestrial radiation</subject><issn>0265-931X</issn><issn>1879-1700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAyEQhonR2Fr9CZo9etkK7LLAyWjjV9LEg5p4IywMhs12t8K2pv56aVq9eiIZnpl35kHonOApwaS6aqYNdOug7ZRiSlKtYpwcoDERXOaEY3yIxphWLJcFeR-hkxgbjFNd0GM0KgrOMcd0jG5v9Qai110Wl3rwus0WvYW29d1H1rtsgBAgDmH7kbJ8Qvou81328uWHbwit7uwpOnK6jXC2fyfo7f7udfaYz58fnmY389yUJRtyXjgBhgtGS8GctZWrnbDclJaX0lFNucXaWU1lLRzWrJBUWlpwEBJqqU0xQZe7ucvQf67SVmrho0m76g76VVSUMSJLJrFIKNuhJvQxBnBqGfxCh40iWG31qUbt9amtPrXTl_ou9hGregH2r-vXVwKudwCkQ9cegorGQ2fA-gBmULb3_0T8AEtWhJE</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Folly, Christophe L.</creator><creator>Konstantinoudis, Garyfallos</creator><creator>Mazzei-Abba, Antonella</creator><creator>Kreis, Christian</creator><creator>Bucher, Benno</creator><creator>Furrer, Reinhard</creator><creator>Spycher, Ben D.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5273-1954</orcidid></search><sort><creationdate>202107</creationdate><title>Bayesian spatial modelling of terrestrial radiation in Switzerland</title><author>Folly, Christophe L. ; Konstantinoudis, Garyfallos ; Mazzei-Abba, Antonella ; Kreis, Christian ; Bucher, Benno ; Furrer, Reinhard ; Spycher, Ben D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayes Theorem</topic><topic>Bayesian theory</topic><topic>exposure assessment</topic><topic>Gaussian Markov random fields</topic><topic>geographical variation</topic><topic>Low-dose ionising radiation</topic><topic>Natural background radiation</topic><topic>Radiation Monitoring</topic><topic>radioactivity</topic><topic>Spatial statistics</topic><topic>Stochastic partial differential equation</topic><topic>Switzerland</topic><topic>terrestrial radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folly, Christophe L.</creatorcontrib><creatorcontrib>Konstantinoudis, Garyfallos</creatorcontrib><creatorcontrib>Mazzei-Abba, Antonella</creatorcontrib><creatorcontrib>Kreis, Christian</creatorcontrib><creatorcontrib>Bucher, Benno</creatorcontrib><creatorcontrib>Furrer, Reinhard</creatorcontrib><creatorcontrib>Spycher, Ben D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of environmental radioactivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folly, Christophe L.</au><au>Konstantinoudis, Garyfallos</au><au>Mazzei-Abba, Antonella</au><au>Kreis, Christian</au><au>Bucher, Benno</au><au>Furrer, Reinhard</au><au>Spycher, Ben D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian spatial modelling of terrestrial radiation in Switzerland</atitle><jtitle>Journal of environmental radioactivity</jtitle><addtitle>J Environ Radioact</addtitle><date>2021-07</date><risdate>2021</risdate><volume>233</volume><spage>106571</spage><pages>106571-</pages><artnum>106571</artnum><issn>0265-931X</issn><eissn>1879-1700</eissn><abstract>The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination. •We fitted Bayesian spatial models to γ-spectrometry measurements to obtain a map of terrestrial radiation for Switzerland.•The best performing model contained two spatial random-effects capturing short- and long-range spatial correlation.•This model achieved an R2 of 0.75 in a random validation sample and an R2 of 0.4 in 4-fold spatial cross-validation.•We provide the map of predicted dose rates and 100 maps representing realisations from the joint posterior on GitHub.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33770702</pmid><doi>10.1016/j.jenvrad.2021.106571</doi><orcidid>https://orcid.org/0000-0001-5273-1954</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-931X
ispartof Journal of environmental radioactivity, 2021-07, Vol.233, p.106571, Article 106571
issn 0265-931X
1879-1700
language eng
recordid cdi_crossref_primary_10_1016_j_jenvrad_2021_106571
source ScienceDirect Journals
subjects Bayes Theorem
Bayesian theory
exposure assessment
Gaussian Markov random fields
geographical variation
Low-dose ionising radiation
Natural background radiation
Radiation Monitoring
radioactivity
Spatial statistics
Stochastic partial differential equation
Switzerland
terrestrial radiation
title Bayesian spatial modelling of terrestrial radiation in Switzerland
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20spatial%20modelling%20of%20terrestrial%20radiation%20in%20Switzerland&rft.jtitle=Journal%20of%20environmental%20radioactivity&rft.au=Folly,%20Christophe%20L.&rft.date=2021-07&rft.volume=233&rft.spage=106571&rft.pages=106571-&rft.artnum=106571&rft.issn=0265-931X&rft.eissn=1879-1700&rft_id=info:doi/10.1016/j.jenvrad.2021.106571&rft_dat=%3Cproquest_cross%3E2551945908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-73f8ec7852485fdd6fbf8d7c4d749f2a27d0afda29b8f0a53929d237e89eb9ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551945908&rft_id=info:pmid/33770702&rfr_iscdi=true