Loading…

PSF/GO filtering membrane fabricated by electro-spinning applied on arsenic contaminated underground water

The excess arsenic content in groundwater sources threatens more than 50 million people worldwide. Current water treatment projects use polysulfone nanofiltration membranes (NFM). However, the inherent hydrophilicity of polysulfone nanofiltration membranes causes the membrane fouling problem. This s...

Full description

Saved in:
Bibliographic Details
Published in:Maǧallaẗ al-abḥath al-handasiyyaẗ 2024-09, Vol.12 (3), p.310-320
Main Authors: Tulugan, Kelimu, Tian, Peng, Li, Xiang, Zhao, Wei, Zhang, Xin, Zhao, YiBin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excess arsenic content in groundwater sources threatens more than 50 million people worldwide. Current water treatment projects use polysulfone nanofiltration membranes (NFM). However, the inherent hydrophilicity of polysulfone nanofiltration membranes causes the membrane fouling problem. This study addresses this problem by improving the hydrophilic and anti-pollution properties by doping graphene oxide (GO) particles in polysulfone(PSF) membranes. Microstructure, morphology, and hydrophilicity of PSF/GO membranes were analyzed by field emission scanning electron microscope (FEFEM), contact angle, and BET surface area analysis. X-ray diffraction (XRD), zeta potential, Energy Dispersive Spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to analyze the results of the phase structure and element distribution. Permeation tests and adsorption of arsenic experiments were used to study the filtration performance of PSF/GO membranes. The results showed that PSF/GO with high porosity enlarged the specific surface area significantly. The contact angle decreased by only about 7°. Still, the water flux increased from 33.26 L/m2/h to 183.62 L/m2/h, which weakened the effect caused by membrane contamination of the arsenate solution and GO doping on the arsenate adsorption rate of PSF/GO nanofiltration membrane was discussed. The results showed that solution pH was crucial in As (V) adsorption onto PSF/GO and obtaining higher adsorption capacity at higher pH. In an alkaline environment, The adsorption rate increased from 26.71% of pure PSF fiber membrane to 79.83%.
ISSN:2307-1877
DOI:10.1016/j.jer.2024.01.001