Loading…
In situ construction of Z-scheme FeS2/Fe2O3 photocatalyst via structural transformation of pyrite for photocatalytic degradation of carbamazepine and the synergistic reduction of Cr(VI)
Pyrite is the most abundant sulfide semiconductor mineral with excellent optical properties. However, few reports have investigated its photocatalytic activity because of the low photogenerated carrier separation efficiency. In this work, a Z-scheme FeS2/Fe2O3 composite photocatalyst was fabricated...
Saved in:
Published in: | Journal of environmental sciences (China) 2021-03, Vol.101, p.351-360 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pyrite is the most abundant sulfide semiconductor mineral with excellent optical properties. However, few reports have investigated its photocatalytic activity because of the low photogenerated carrier separation efficiency. In this work, a Z-scheme FeS2/Fe2O3 composite photocatalyst was fabricated in situ via structural transformation of pyrite through heat treatment. A remarkably enhanced photocatalytic performance was observed over the FeS2/Fe2O3 composite photocatalyst. Compared with the pristine pyrite, the degradation efficiency of carbamazepine (CBZ) reached 65% at the added hexavalent chromium (Cr(Ⅵ)) concentration of 20 mg/L and the Cr(Ⅵ) was nearly completely reduced in the mixed system using FeS2/Fe2O3 within 30 min under simulated solar light irradiation. The enhanced photocatalytic activity can be attributed to the efficient separation and transfer of photogenerated carriers in the FeS2/Fe2O3 composite photocatalyst. This facilitated the generation of •OH, hole (h+) and •O2− species, which participated in the photocatalytic reaction with CBZ. Based on the measurement of the active species and electric properties, a Z-scheme electron transfer pathway was proposed for the FeS2/Fe2O3 composite photocatalyst. This work broadens the application potential of pyrite in environmental remediation.
[Display omitted] |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/j.jes.2020.08.029 |