Loading…
Kinetically stabilized metastable polarization states in ferroelectric ceramics
By directly using experimental hysteresis loop data, a Landau theory-based model has been developed to investigate the effects of externally applied stimuli (electric field, stress, and temperature) on the average, time-dependent response in ferroelectric ceramics. For both PLZT and BNT-BT-KNN syste...
Saved in:
Published in: | Journal of the European Ceramic Society 2017-02, Vol.37 (2), p.573-581 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By directly using experimental hysteresis loop data, a Landau theory-based model has been developed to investigate the effects of externally applied stimuli (electric field, stress, and temperature) on the average, time-dependent response in ferroelectric ceramics. For both PLZT and BNT-BT-KNN systems, experimentally observed (macroscopic) metastable states are a result of a free energy minimum that develops at a zero polarization state when the sample is subject to an externally applied field. Additionally, the frequency dependent hysteresis response demonstrates that a transition between relaxor ferroelectric and antiferroelectric develops at a critical cycling frequency, in agreement with the literature. The appearance of frequency-induced and electric field amplitude-induced kinetically stabilized phases is proposed and summarized in terms of frequency-stress and frequency-temperature response maps. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2016.08.022 |