Loading…

Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications

Ultra-High-Temperature Ceramic (UHTC) materials, because of their high temperature resistance, are suitable as thermal protection systems for re-entry vehicles or components for space propulsion. Massive UHTC materials are characterized by poor thermal shock resistance, which may be overcome using C...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the European Ceramic Society 2018-07, Vol.38 (8), p.2937-2953
Main Authors: Savino, Raffaele, Criscuolo, Luigi, Di Martino, Giuseppe Daniele, Mungiguerra, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra-High-Temperature Ceramic (UHTC) materials, because of their high temperature resistance, are suitable as thermal protection systems for re-entry vehicles or components for space propulsion. Massive UHTC materials are characterized by poor thermal shock resistance, which may be overcome using C or SiC fibers in a UHTC matrix (UHTCMC). The University of Naples “Federico II” has a proven experience in the field of material characterization in high-enthalpy environments. A hypersonic arc-jet facility allows performing tests in simulated atmospheric re-entry conditions. The Aerospace Propulsion Laboratory is employed for testing rocket components in a representative combustion environment. Ad-hoc computational models are developed to characterize the flow field in both facilities and perform thermal analysis of solid samples. Current research programs are related to a new-class of UHTCMC materials, for rocket nozzles and thermal protection systems. The activities include design of the prototypes for the test campaign, numerical simulations and materials characterizations.
ISSN:0955-2219
1873-619X
DOI:10.1016/j.jeurceramsoc.2017.12.043