Loading…
Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology
A novel method has been developed to fabricate carbon fiber reinforced SiC (Cf/SiC) composites by combining 3D printing and liquid silicon infiltration process. Green parts are firstly fabricated through 3D printing from a starting phenolic resin coated carbon fiber composite powder; then the green...
Saved in:
Published in: | Journal of the European Ceramic Society 2018-11, Vol.38 (14), p.4604-4613 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel method has been developed to fabricate carbon fiber reinforced SiC (Cf/SiC) composites by combining 3D printing and liquid silicon infiltration process. Green parts are firstly fabricated through 3D printing from a starting phenolic resin coated carbon fiber composite powder; then the green parts are subjected to vacuum resin infiltration and pyrolysis successively to generate carbon fiber/carbon (Cf/C) preforms; finally, the Cf/C preforms are infiltrated with liquid silicon to obtain Cf/SiC composites. The 3D printing processing parameters show significant effects on the physical properties of the green parts and also the resultant Cf/C preforms, consequently greatly affecting the microstructures and mechanical performances of the final Cf/SiC composites. The overall linear shrinkage of the Cf/SiC composites is less than 3%, and the maximum density, flexural strength and fracture toughness are 2.83 ± 0.03 g/cm3, 249 ± 17.0 MPa and 3.48 ± 0.24 MPa m1/2, respectively. It demonstrates the capability of making near net-shape Cf/SiC composite parts with complex structures. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2018.06.022 |