Loading…

Hydroxyapatite/bioactive glass functionally graded materials (FGM) for bone tissue engineering

In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the European Ceramic Society 2020-10, Vol.40 (13), p.4623-4634
Main Authors: Luginina, Marina, Angioni, Damiano, Montinaro, Selena, Orrù, Roberto, Cao, Giacomo, Sergi, Rachele, Bellucci, Devis, Cannillo, Valeria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 min/50 MPa, respectively, using a die with varying cross section. Results arising from XRD, SEM, mechanical and biological characterization in SBF, evidence that lower temperature and higher-pressure levels used for FGMS2 samples provide better materials in terms of microstructure, compactness, hardness, elastic modulus and in vitro bioactivity. Indeed, a fully sintered and crack-free microstructure with no crystallisation at the top layer (100% bioactive glass) is correspondingly produced. The obtainment of such FGMs is quite promising, since it permits to vary the relative volume fractions of the two constituents and, consequently, tailor the biological response for specific clinical applications.
ISSN:0955-2219
1873-619X
DOI:10.1016/j.jeurceramsoc.2020.05.061