Loading…

Excellent energy-storage performances in La2O3 doped (Na,K)NbO3-based lead-free relaxor ferroelectrics

Relaxor ferroelectric (FE) materials have received increasing attention owing to their great potentials for energy-storage applications, especially for the ones with high energy-storage density, efficiency and thermal stability simultaneously. A novel lead-free [(Na0.5K0.5)0.97-xLi0.03](Nb0.94-xSb0....

Full description

Saved in:
Bibliographic Details
Published in:Journal of the European Ceramic Society 2020-12, Vol.40 (15), p.5466-5474
Main Authors: Zhang, Yanpu, Zuo, Ruzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relaxor ferroelectric (FE) materials have received increasing attention owing to their great potentials for energy-storage applications, especially for the ones with high energy-storage density, efficiency and thermal stability simultaneously. A novel lead-free [(Na0.5K0.5)0.97-xLi0.03](Nb0.94-xSb0.06)O3-xBi(Zn1/2Zr1/2)O3 (NKLNS-xBZZ) ceramics was developed by a solid-state reaction method. The addition of BZZ has induced obvious dielectric relaxation behavior, as well as improved thermal stability of dielectric response. Furthermore, 0.4 wt.% La2O3 was added into the NKLNS-0.06BZZ ceramic, leading to an increased breakdown strength as a result of the reduction of grain size, improvement of bulk resistivity and decrease of dielectric loss. A large recoverable energy-storage density (∼4.85 J/cm3) and a high efficiency (∼88.2 %) as well as an excellent thermal stability (±12 %, 25–140 °C) were simultaneously obtained, together with a fast discharge rate (t0.9∼112 ns). These results suggest that La2O3 doped NKLNS-0.06BZZ ceramic could become an attractive dielectric material for temperature-stable energy-storage capacitors.
ISSN:0955-2219
1873-619X
DOI:10.1016/j.jeurceramsoc.2020.06.048