Loading…
Pressureless sintering of fully ceramic microencapsulated fuels
A new strategy was introduced to achieve high volume fraction of tristructural isotropic (TRISO) particles (> 35 vol%) in fully ceramic microencapsulated (FCM) fuels. The proposed strategy requires (1) applying a controlled coating of a SiC matrix on the TRISO particles, (2) forming the coated TR...
Saved in:
Published in: | Journal of the European Ceramic Society 2020-12, Vol.40 (15), p.5180-5185 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new strategy was introduced to achieve high volume fraction of tristructural isotropic (TRISO) particles (> 35 vol%) in fully ceramic microencapsulated (FCM) fuels. The proposed strategy requires (1) applying a controlled coating of a SiC matrix on the TRISO particles, (2) forming the coated TRISO particles using cold isostatic pressing, and (3) sintering the formed sample without applied pressure. The strategy was very effective for preventing both the rupture of TRISO particles and matrix cracking during sintering. The thinner the coating layer, the higher the volume fraction of the TRISO particles obtained in the FCM pellets. However, when the coating thickness was extremely thin (≤ 133 μm), radial cracks were observed near the TRISO particles in the SiC matrix after sintering. The maximum TRISO volume fraction (∼35.3 %) was obtained when the coating thickness was ∼215 μm and the TRISO pellets had no cracks in the SiC matrix. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2020.07.036 |