Loading…

Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth

We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 2021-06, Vol.280 (11), p.108989, Article 108989
Main Authors: Bieganowski, Bartosz, Mederski, Jarosław
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3
cites cdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3
container_end_page
container_issue 11
container_start_page 108989
container_title Journal of functional analysis
container_volume 280
creator Bieganowski, Bartosz
Mederski, Jarosław
description We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.
doi_str_mv 10.1016/j.jfa.2021.108989
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jfa_2021_108989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123621000719</els_id><sourcerecordid>S0022123621000719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAGbeQIo_-ThihCqgSBUMgLH1aj83jtIEbJcKFsYG2BipypjR1R2cq6tDyCVnM854edXOWgczwQQfu6pVfUQmnNVlxiolj8mEMSEyLmR5Ss5ibBnjvMyLCVk9DmEDnf9CS9dh2PaWxgQJIx0cTQ3Sfug73yME-mya8PNtfb_GQPF9C8kPPd351FBItEOIiW4gRmqCT95Atx_cpeacnDjoIl785ZS83t2-zBfZ8un-YX6zzIyoq5RZI5XiWABDDnZV8VLlDoQTKwnWSVCyrlxpVe2cYU4UssytA6x4kTOmuJFTwg-7JgwxBnT6LfgNhE_Nmd5L0q0eJem9JH2QNDLXBwbHYx8eg47GY2_Q-oAmaTv4f-hfN8xyXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</title><source>Elsevier</source><creator>Bieganowski, Bartosz ; Mederski, Jarosław</creator><creatorcontrib>Bieganowski, Bartosz ; Mederski, Jarosław</creatorcontrib><description>We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ&gt;0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2021.108989</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nonlinear scalar field equation ; Nonlinear Schrödinger equations ; Normalized ground states ; Pohozaev manifold</subject><ispartof>Journal of functional analysis, 2021-06, Vol.280 (11), p.108989, Article 108989</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</citedby><cites>FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</cites><orcidid>0000-0003-2037-1573 ; 0000-0002-7800-8200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><creatorcontrib>Mederski, Jarosław</creatorcontrib><title>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</title><title>Journal of functional analysis</title><description>We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ&gt;0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.</description><subject>Nonlinear scalar field equation</subject><subject>Nonlinear Schrödinger equations</subject><subject>Normalized ground states</subject><subject>Pohozaev manifold</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAGbeQIo_-ThihCqgSBUMgLH1aj83jtIEbJcKFsYG2BipypjR1R2cq6tDyCVnM854edXOWgczwQQfu6pVfUQmnNVlxiolj8mEMSEyLmR5Ss5ibBnjvMyLCVk9DmEDnf9CS9dh2PaWxgQJIx0cTQ3Sfug73yME-mya8PNtfb_GQPF9C8kPPd351FBItEOIiW4gRmqCT95Atx_cpeacnDjoIl785ZS83t2-zBfZ8un-YX6zzIyoq5RZI5XiWABDDnZV8VLlDoQTKwnWSVCyrlxpVe2cYU4UssytA6x4kTOmuJFTwg-7JgwxBnT6LfgNhE_Nmd5L0q0eJem9JH2QNDLXBwbHYx8eg47GY2_Q-oAmaTv4f-hfN8xyXg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bieganowski, Bartosz</creator><creator>Mederski, Jarosław</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid><orcidid>https://orcid.org/0000-0002-7800-8200</orcidid></search><sort><creationdate>20210601</creationdate><title>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</title><author>Bieganowski, Bartosz ; Mederski, Jarosław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Nonlinear scalar field equation</topic><topic>Nonlinear Schrödinger equations</topic><topic>Normalized ground states</topic><topic>Pohozaev manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><creatorcontrib>Mederski, Jarosław</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieganowski, Bartosz</au><au>Mederski, Jarosław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</atitle><jtitle>Journal of functional analysis</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>280</volume><issue>11</issue><spage>108989</spage><pages>108989-</pages><artnum>108989</artnum><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ&gt;0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfa.2021.108989</doi><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid><orcidid>https://orcid.org/0000-0002-7800-8200</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 2021-06, Vol.280 (11), p.108989, Article 108989
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1016_j_jfa_2021_108989
source Elsevier
subjects Nonlinear scalar field equation
Nonlinear Schrödinger equations
Normalized ground states
Pohozaev manifold
title Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalized%20ground%20states%20of%20the%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20at%20least%20mass%20critical%20growth&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Bieganowski,%20Bartosz&rft.date=2021-06-01&rft.volume=280&rft.issue=11&rft.spage=108989&rft.pages=108989-&rft.artnum=108989&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2021.108989&rft_dat=%3Celsevier_cross%3ES0022123621000719%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true