Loading…
Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth
We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on...
Saved in:
Published in: | Journal of functional analysis 2021-06, Vol.280 (11), p.108989, Article 108989 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3 |
container_end_page | |
container_issue | 11 |
container_start_page | 108989 |
container_title | Journal of functional analysis |
container_volume | 280 |
creator | Bieganowski, Bartosz Mederski, Jarosław |
description | We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0. |
doi_str_mv | 10.1016/j.jfa.2021.108989 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jfa_2021_108989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123621000719</els_id><sourcerecordid>S0022123621000719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAGbeQIo_-ThihCqgSBUMgLH1aj83jtIEbJcKFsYG2BipypjR1R2cq6tDyCVnM854edXOWgczwQQfu6pVfUQmnNVlxiolj8mEMSEyLmR5Ss5ibBnjvMyLCVk9DmEDnf9CS9dh2PaWxgQJIx0cTQ3Sfug73yME-mya8PNtfb_GQPF9C8kPPd351FBItEOIiW4gRmqCT95Atx_cpeacnDjoIl785ZS83t2-zBfZ8un-YX6zzIyoq5RZI5XiWABDDnZV8VLlDoQTKwnWSVCyrlxpVe2cYU4UssytA6x4kTOmuJFTwg-7JgwxBnT6LfgNhE_Nmd5L0q0eJem9JH2QNDLXBwbHYx8eg47GY2_Q-oAmaTv4f-hfN8xyXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</title><source>Elsevier</source><creator>Bieganowski, Bartosz ; Mederski, Jarosław</creator><creatorcontrib>Bieganowski, Bartosz ; Mederski, Jarosław</creatorcontrib><description>We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2021.108989</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nonlinear scalar field equation ; Nonlinear Schrödinger equations ; Normalized ground states ; Pohozaev manifold</subject><ispartof>Journal of functional analysis, 2021-06, Vol.280 (11), p.108989, Article 108989</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</citedby><cites>FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</cites><orcidid>0000-0003-2037-1573 ; 0000-0002-7800-8200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><creatorcontrib>Mederski, Jarosław</creatorcontrib><title>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</title><title>Journal of functional analysis</title><description>We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.</description><subject>Nonlinear scalar field equation</subject><subject>Nonlinear Schrödinger equations</subject><subject>Normalized ground states</subject><subject>Pohozaev manifold</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAGbeQIo_-ThihCqgSBUMgLH1aj83jtIEbJcKFsYG2BipypjR1R2cq6tDyCVnM854edXOWgczwQQfu6pVfUQmnNVlxiolj8mEMSEyLmR5Ss5ibBnjvMyLCVk9DmEDnf9CS9dh2PaWxgQJIx0cTQ3Sfug73yME-mya8PNtfb_GQPF9C8kPPd351FBItEOIiW4gRmqCT95Atx_cpeacnDjoIl785ZS83t2-zBfZ8un-YX6zzIyoq5RZI5XiWABDDnZV8VLlDoQTKwnWSVCyrlxpVe2cYU4UssytA6x4kTOmuJFTwg-7JgwxBnT6LfgNhE_Nmd5L0q0eJem9JH2QNDLXBwbHYx8eg47GY2_Q-oAmaTv4f-hfN8xyXg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bieganowski, Bartosz</creator><creator>Mederski, Jarosław</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid><orcidid>https://orcid.org/0000-0002-7800-8200</orcidid></search><sort><creationdate>20210601</creationdate><title>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</title><author>Bieganowski, Bartosz ; Mederski, Jarosław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Nonlinear scalar field equation</topic><topic>Nonlinear Schrödinger equations</topic><topic>Normalized ground states</topic><topic>Pohozaev manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><creatorcontrib>Mederski, Jarosław</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieganowski, Bartosz</au><au>Mederski, Jarosław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth</atitle><jtitle>Journal of functional analysis</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>280</volume><issue>11</issue><spage>108989</spage><pages>108989-</pages><artnum>108989</artnum><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We propose a simple minimization method to show the existence of least energy solutions to the normalized problem{−Δu+λu=g(u)inRN,N≥3,u∈H1(RN),∫RN|u|2dx=ρ>0, where ρ is prescribed and (λ,u)∈R×H1(RN) is to be determined. The new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball in L2(RN) of radius ρ is demonstrated, which allows to provide general growth assumptions imposed on g. We cover the most known physical examples and nonlinearities with growth considered in the literature so far as well as we admit the mass critical growth at 0.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfa.2021.108989</doi><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid><orcidid>https://orcid.org/0000-0002-7800-8200</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2021-06, Vol.280 (11), p.108989, Article 108989 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jfa_2021_108989 |
source | Elsevier |
subjects | Nonlinear scalar field equation Nonlinear Schrödinger equations Normalized ground states Pohozaev manifold |
title | Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalized%20ground%20states%20of%20the%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20at%20least%20mass%20critical%20growth&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Bieganowski,%20Bartosz&rft.date=2021-06-01&rft.volume=280&rft.issue=11&rft.spage=108989&rft.pages=108989-&rft.artnum=108989&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2021.108989&rft_dat=%3Celsevier_cross%3ES0022123621000719%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-dc3881e5a0e1adb71684fa2f2b3adf3a8397f6d89ffc0f25364dfae71540081c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |