Loading…

Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models

The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food composition and analysis 2024-11, Vol.135, p.106635, Article 106635
Main Authors: Peng, Jianheng, Zhang, Jiahong, Han, Lipeng, Ma, Xiaoyan, Hu, Xinjun, Lin, Tong, He, Lin, Yi, Xinqiang, Tian, Jianping, Chen, Manjiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23
container_end_page
container_issue
container_start_page 106635
container_title Journal of food composition and analysis
container_volume 135
creator Peng, Jianheng
Zhang, Jiahong
Han, Lipeng
Ma, Xiaoyan
Hu, Xinjun
Lin, Tong
He, Lin
Yi, Xinqiang
Tian, Jianping
Chen, Manjiao
description The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products. •Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.
doi_str_mv 10.1016/j.jfca.2024.106635
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jfca_2024_106635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889157524006690</els_id><sourcerecordid>S0889157524006690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AiVJ4AU5-gRbbadxY4oLKr1SJC5ytrbNJHBK7sl1QH4G3xlE5c1rNSN9odgi54WzJGZe3_bJvDCwFE6tsSFmUZ2TGqkoteLkuL8hljD1jrBSrakZ-HjBhGK2DZL2jvqEjDJC6SRjvErpEraPRh7Y7jLQNYF2kh2hdS7vjHkPco0kBBmpHaCc3oemcH3x7zAHjzjqs6bdNHY0JzGcWI5guu3RACG4iRl_jEK_IeQNDxOu_OycfT4_vm5fF9u35dXO_XRhe8bRQO17IwlRypYpSlIqD2GENXCmpkDG5ZggKBa9FIQQYWa0VM1VhUMmmgOzOiTjlmuBjDNjofcjdw1FzpqcBda-nAfU0oD4NmKG7E5SL4pfFoKOx6AzWNuT_de3tf_gvfDt_LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Peng, Jianheng ; Zhang, Jiahong ; Han, Lipeng ; Ma, Xiaoyan ; Hu, Xinjun ; Lin, Tong ; He, Lin ; Yi, Xinqiang ; Tian, Jianping ; Chen, Manjiao</creator><creatorcontrib>Peng, Jianheng ; Zhang, Jiahong ; Han, Lipeng ; Ma, Xiaoyan ; Hu, Xinjun ; Lin, Tong ; He, Lin ; Yi, Xinqiang ; Tian, Jianping ; Chen, Manjiao</creatorcontrib><description>The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products. •Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.</description><identifier>ISSN: 0889-1575</identifier><identifier>DOI: 10.1016/j.jfca.2024.106635</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Hyperspectral imaging ; Pesticide residues ; Sorghum ; Stacking ensemble learning</subject><ispartof>Journal of food composition and analysis, 2024-11, Vol.135, p.106635, Article 106635</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Jianheng</creatorcontrib><creatorcontrib>Zhang, Jiahong</creatorcontrib><creatorcontrib>Han, Lipeng</creatorcontrib><creatorcontrib>Ma, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Xinjun</creatorcontrib><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Yi, Xinqiang</creatorcontrib><creatorcontrib>Tian, Jianping</creatorcontrib><creatorcontrib>Chen, Manjiao</creatorcontrib><title>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</title><title>Journal of food composition and analysis</title><description>The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products. •Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.</description><subject>Hyperspectral imaging</subject><subject>Pesticide residues</subject><subject>Sorghum</subject><subject>Stacking ensemble learning</subject><issn>0889-1575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AiVJ4AU5-gRbbadxY4oLKr1SJC5ytrbNJHBK7sl1QH4G3xlE5c1rNSN9odgi54WzJGZe3_bJvDCwFE6tsSFmUZ2TGqkoteLkuL8hljD1jrBSrakZ-HjBhGK2DZL2jvqEjDJC6SRjvErpEraPRh7Y7jLQNYF2kh2hdS7vjHkPco0kBBmpHaCc3oemcH3x7zAHjzjqs6bdNHY0JzGcWI5guu3RACG4iRl_jEK_IeQNDxOu_OycfT4_vm5fF9u35dXO_XRhe8bRQO17IwlRypYpSlIqD2GENXCmpkDG5ZggKBa9FIQQYWa0VM1VhUMmmgOzOiTjlmuBjDNjofcjdw1FzpqcBda-nAfU0oD4NmKG7E5SL4pfFoKOx6AzWNuT_de3tf_gvfDt_LQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Peng, Jianheng</creator><creator>Zhang, Jiahong</creator><creator>Han, Lipeng</creator><creator>Ma, Xiaoyan</creator><creator>Hu, Xinjun</creator><creator>Lin, Tong</creator><creator>He, Lin</creator><creator>Yi, Xinqiang</creator><creator>Tian, Jianping</creator><creator>Chen, Manjiao</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202411</creationdate><title>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</title><author>Peng, Jianheng ; Zhang, Jiahong ; Han, Lipeng ; Ma, Xiaoyan ; Hu, Xinjun ; Lin, Tong ; He, Lin ; Yi, Xinqiang ; Tian, Jianping ; Chen, Manjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hyperspectral imaging</topic><topic>Pesticide residues</topic><topic>Sorghum</topic><topic>Stacking ensemble learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jianheng</creatorcontrib><creatorcontrib>Zhang, Jiahong</creatorcontrib><creatorcontrib>Han, Lipeng</creatorcontrib><creatorcontrib>Ma, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Xinjun</creatorcontrib><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Yi, Xinqiang</creatorcontrib><creatorcontrib>Tian, Jianping</creatorcontrib><creatorcontrib>Chen, Manjiao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of food composition and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jianheng</au><au>Zhang, Jiahong</au><au>Han, Lipeng</au><au>Ma, Xiaoyan</au><au>Hu, Xinjun</au><au>Lin, Tong</au><au>He, Lin</au><au>Yi, Xinqiang</au><au>Tian, Jianping</au><au>Chen, Manjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</atitle><jtitle>Journal of food composition and analysis</jtitle><date>2024-11</date><risdate>2024</risdate><volume>135</volume><spage>106635</spage><pages>106635-</pages><artnum>106635</artnum><issn>0889-1575</issn><abstract>The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products. •Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfca.2024.106635</doi></addata></record>
fulltext fulltext
identifier ISSN: 0889-1575
ispartof Journal of food composition and analysis, 2024-11, Vol.135, p.106635, Article 106635
issn 0889-1575
language eng
recordid cdi_crossref_primary_10_1016_j_jfca_2024_106635
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Hyperspectral imaging
Pesticide residues
Sorghum
Stacking ensemble learning
title Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20malathion%20content%20in%20sorghum%20grains%20using%20hyperspectral%20imaging%20technology%20combined%20with%20stacked%20machine%20learning%20models&rft.jtitle=Journal%20of%20food%20composition%20and%20analysis&rft.au=Peng,%20Jianheng&rft.date=2024-11&rft.volume=135&rft.spage=106635&rft.pages=106635-&rft.artnum=106635&rft.issn=0889-1575&rft_id=info:doi/10.1016/j.jfca.2024.106635&rft_dat=%3Celsevier_cross%3ES0889157524006690%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true