Loading…
Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models
The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI...
Saved in:
Published in: | Journal of food composition and analysis 2024-11, Vol.135, p.106635, Article 106635 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23 |
container_end_page | |
container_issue | |
container_start_page | 106635 |
container_title | Journal of food composition and analysis |
container_volume | 135 |
creator | Peng, Jianheng Zhang, Jiahong Han, Lipeng Ma, Xiaoyan Hu, Xinjun Lin, Tong He, Lin Yi, Xinqiang Tian, Jianping Chen, Manjiao |
description | The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products.
•Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling. |
doi_str_mv | 10.1016/j.jfca.2024.106635 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jfca_2024_106635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889157524006690</els_id><sourcerecordid>S0889157524006690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AiVJ4AU5-gRbbadxY4oLKr1SJC5ytrbNJHBK7sl1QH4G3xlE5c1rNSN9odgi54WzJGZe3_bJvDCwFE6tsSFmUZ2TGqkoteLkuL8hljD1jrBSrakZ-HjBhGK2DZL2jvqEjDJC6SRjvErpEraPRh7Y7jLQNYF2kh2hdS7vjHkPco0kBBmpHaCc3oemcH3x7zAHjzjqs6bdNHY0JzGcWI5guu3RACG4iRl_jEK_IeQNDxOu_OycfT4_vm5fF9u35dXO_XRhe8bRQO17IwlRypYpSlIqD2GENXCmpkDG5ZggKBa9FIQQYWa0VM1VhUMmmgOzOiTjlmuBjDNjofcjdw1FzpqcBda-nAfU0oD4NmKG7E5SL4pfFoKOx6AzWNuT_de3tf_gvfDt_LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Peng, Jianheng ; Zhang, Jiahong ; Han, Lipeng ; Ma, Xiaoyan ; Hu, Xinjun ; Lin, Tong ; He, Lin ; Yi, Xinqiang ; Tian, Jianping ; Chen, Manjiao</creator><creatorcontrib>Peng, Jianheng ; Zhang, Jiahong ; Han, Lipeng ; Ma, Xiaoyan ; Hu, Xinjun ; Lin, Tong ; He, Lin ; Yi, Xinqiang ; Tian, Jianping ; Chen, Manjiao</creatorcontrib><description>The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products.
•Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.</description><identifier>ISSN: 0889-1575</identifier><identifier>DOI: 10.1016/j.jfca.2024.106635</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Hyperspectral imaging ; Pesticide residues ; Sorghum ; Stacking ensemble learning</subject><ispartof>Journal of food composition and analysis, 2024-11, Vol.135, p.106635, Article 106635</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Jianheng</creatorcontrib><creatorcontrib>Zhang, Jiahong</creatorcontrib><creatorcontrib>Han, Lipeng</creatorcontrib><creatorcontrib>Ma, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Xinjun</creatorcontrib><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Yi, Xinqiang</creatorcontrib><creatorcontrib>Tian, Jianping</creatorcontrib><creatorcontrib>Chen, Manjiao</creatorcontrib><title>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</title><title>Journal of food composition and analysis</title><description>The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products.
•Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.</description><subject>Hyperspectral imaging</subject><subject>Pesticide residues</subject><subject>Sorghum</subject><subject>Stacking ensemble learning</subject><issn>0889-1575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AiVJ4AU5-gRbbadxY4oLKr1SJC5ytrbNJHBK7sl1QH4G3xlE5c1rNSN9odgi54WzJGZe3_bJvDCwFE6tsSFmUZ2TGqkoteLkuL8hljD1jrBSrakZ-HjBhGK2DZL2jvqEjDJC6SRjvErpEraPRh7Y7jLQNYF2kh2hdS7vjHkPco0kBBmpHaCc3oemcH3x7zAHjzjqs6bdNHY0JzGcWI5guu3RACG4iRl_jEK_IeQNDxOu_OycfT4_vm5fF9u35dXO_XRhe8bRQO17IwlRypYpSlIqD2GENXCmpkDG5ZggKBa9FIQQYWa0VM1VhUMmmgOzOiTjlmuBjDNjofcjdw1FzpqcBda-nAfU0oD4NmKG7E5SL4pfFoKOx6AzWNuT_de3tf_gvfDt_LQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Peng, Jianheng</creator><creator>Zhang, Jiahong</creator><creator>Han, Lipeng</creator><creator>Ma, Xiaoyan</creator><creator>Hu, Xinjun</creator><creator>Lin, Tong</creator><creator>He, Lin</creator><creator>Yi, Xinqiang</creator><creator>Tian, Jianping</creator><creator>Chen, Manjiao</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202411</creationdate><title>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</title><author>Peng, Jianheng ; Zhang, Jiahong ; Han, Lipeng ; Ma, Xiaoyan ; Hu, Xinjun ; Lin, Tong ; He, Lin ; Yi, Xinqiang ; Tian, Jianping ; Chen, Manjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hyperspectral imaging</topic><topic>Pesticide residues</topic><topic>Sorghum</topic><topic>Stacking ensemble learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jianheng</creatorcontrib><creatorcontrib>Zhang, Jiahong</creatorcontrib><creatorcontrib>Han, Lipeng</creatorcontrib><creatorcontrib>Ma, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Xinjun</creatorcontrib><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Yi, Xinqiang</creatorcontrib><creatorcontrib>Tian, Jianping</creatorcontrib><creatorcontrib>Chen, Manjiao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of food composition and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jianheng</au><au>Zhang, Jiahong</au><au>Han, Lipeng</au><au>Ma, Xiaoyan</au><au>Hu, Xinjun</au><au>Lin, Tong</au><au>He, Lin</au><au>Yi, Xinqiang</au><au>Tian, Jianping</au><au>Chen, Manjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models</atitle><jtitle>Journal of food composition and analysis</jtitle><date>2024-11</date><risdate>2024</risdate><volume>135</volume><spage>106635</spage><pages>106635-</pages><artnum>106635</artnum><issn>0889-1575</issn><abstract>The rapid and precise detection of pesticide residues remains a pressing safety issue in the food industry. In this study, a rapid method for analyzing pesticide residues in sorghum was developed, combining hyperspectral imaging (HSI) technology with stacking ensemble learning (SEL) models. The HSI spectral data were preprocessed using the multivariate scatter correction (MSC) algorithm. The gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and categorical boosting (CatBoost) algorithms were employed to identify the feature wavelengths with high contributions to the predictive model, and the performances of SEL, GBDT, XGBoost, LGBM, and CatBoost to accurately predict the pesticide residues in sorghum samples were compared. The SEL model constructed using the characteristic wavelength selected by CatBoost has the best predictive performance, with RMSEP, RP2, and RPD values of 0.6940 mg/kg, 0.9798, and 7.029, respectively. The study demonstrated that the combination of HSI and SEL enabled the accurate analysis of pesticide residues in sorghum, providing a reference for the utilization of HSI methods to accurately measure the concentrations of pesticide residues in sorghum and other food products.
•Utilization of HSI for measuring malathion residue levels in sorghum.•Stacking ensemble learning (SEL) models for predicting malathion content in sorghum.•CatBoost-SEL models showed the best prediction results in modeling.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfca.2024.106635</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-1575 |
ispartof | Journal of food composition and analysis, 2024-11, Vol.135, p.106635, Article 106635 |
issn | 0889-1575 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jfca_2024_106635 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Hyperspectral imaging Pesticide residues Sorghum Stacking ensemble learning |
title | Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20malathion%20content%20in%20sorghum%20grains%20using%20hyperspectral%20imaging%20technology%20combined%20with%20stacked%20machine%20learning%20models&rft.jtitle=Journal%20of%20food%20composition%20and%20analysis&rft.au=Peng,%20Jianheng&rft.date=2024-11&rft.volume=135&rft.spage=106635&rft.pages=106635-&rft.artnum=106635&rft.issn=0889-1575&rft_id=info:doi/10.1016/j.jfca.2024.106635&rft_dat=%3Celsevier_cross%3ES0889157524006690%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-9b1363c8649352591a2beda19969e00670ea9e21d2322ac68790c83ce96f3ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |