Loading…

Reliable control for networked control systems with probabilistic actuator fault and random delays

In this paper, the reliable control design is considered for networked control systems (NCSs) against probabilistic actuator fault with different failure rates, measurements distortion, random network-induced delay and packet dropout. A new distribution-based fault model is proposed, which also cont...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2010-12, Vol.347 (10), p.1907-1926
Main Authors: Tian, Engang, Yue, Dong, Peng, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the reliable control design is considered for networked control systems (NCSs) against probabilistic actuator fault with different failure rates, measurements distortion, random network-induced delay and packet dropout. A new distribution-based fault model is proposed, which also contains the probability distribution information of the random delay and packet dropout. By using Lyapunov functional and new technique in dealing with time delay, stability and stabilization criteria are derived in terms of linear matrix inequalities. The provided numerical example and vertical takeoff and landing (VTOL) aircraft system illustrate that: firstly, using the distribution information of the delay, the maximum effective delay bound (MEDB) can be greatly improved, secondly, the proposed reliable controller can stabilize the NCSs with probabilistic actuator fault and measurements distortion, which may be unstable under the controller designed without considering the unreliable cases.
ISSN:0016-0032
1879-2693
DOI:10.1016/j.jfranklin.2010.10.010