Loading…
Sparsity promoting decentralized learning strategies for radio tomographic imaging using consensus based ADMM approach
Radio tomographic imaging (RTI) has wide applications in the detection and tracking of objects that do not require any sensor to be attached to the object. Consequently, it leads to device-free localization (DFL). RTI uses received signal strength (RSS) at different sensor nodes for imaging purposes...
Saved in:
Published in: | Journal of the Franklin Institute 2023-05, Vol.360 (7), p.5211-5241 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radio tomographic imaging (RTI) has wide applications in the detection and tracking of objects that do not require any sensor to be attached to the object. Consequently, it leads to device-free localization (DFL). RTI uses received signal strength (RSS) at different sensor nodes for imaging purposes. The attenuation maps, known as spatial loss fields (SLFs), measure the power loss at each pixel in the wireless sensor network (WSN) of interest. These SLFs help us to detect obstacles and aid in the imaging of objects. The centralized RTI system requires the information of all sensor nodes available at the fusion centre (FC), which in turn increases the communication overhead. Furthermore, the failure of links may lead to improper imaging in the RTI system. Hence, a distributed approach for the RTI system resolves such problems. In this paper, a consensus-based distributed strategy is used for distributed estimation of the SLF. The major contribution of this work is to propose a fully decentralized RTI system by using a consensus-based alternating direction method of multipliers (ADMM) algorithm to alleviate the practical issues with centralized and distributed incremental strategies. We proposed distributed consensus ADMM (DCADMM-RTI) and distributed sparse consensus ADMM (DSCADMM-RTI) for the RTI system to properly localize targets in a distributed fashion. Furthermore, the effect of quantization noise is verified by using the distributed consensus algorithms while sharing the quantized data among the neighbourhoods. |
---|---|
ISSN: | 0016-0032 1879-2693 |
DOI: | 10.1016/j.jfranklin.2023.03.029 |