Loading…
Iterative learning control with parameter estimation for non-repetitive time-varying systems
This paper presents an extension method of iterative learning control (ILC) to address the applications associated with non-repetitive time-varying systems (NTVSs). Conventional ILC approaches employ fixed nominal system models, but non-repetitive time-varying models may lead to accumulated model un...
Saved in:
Published in: | Journal of the Franklin Institute 2024-02, Vol.361 (3), p.1455-1466 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an extension method of iterative learning control (ILC) to address the applications associated with non-repetitive time-varying systems (NTVSs). Conventional ILC approaches employ fixed nominal system models, but non-repetitive time-varying models may lead to accumulated model uncertainties, which fails to satisfy the robust convergence conditions. To tackle this issue, a novel ILC algorithm with parameter estimation is proposed using back propagation neural network. This algorithm incorporates an approach that utilizes Bayesian regularization training mechanism to accurately estimate non-repetitive time-varying parameters. Through comprehensive experiment on Monolithic XY Stage, the performance of proposed algorithm is validated to demonstrate its feasibility and effectiveness while handling tasks on NTVSs. |
---|---|
ISSN: | 0016-0032 |
DOI: | 10.1016/j.jfranklin.2024.01.011 |