Loading…
Microplastics removal efficiency of drinking water treatment plant with pulse clarifier
Microplastics are recognized as ubiquitous pollutants in aquatic environments; however, very little study is done on their occurrence and fate at drinking water treatment plants (DWTPs). Though, the toxic effect of microplastics on human health is not yet well established; there is global concern ab...
Saved in:
Published in: | Journal of hazardous materials 2021-07, Vol.413, p.125347, Article 125347 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microplastics are recognized as ubiquitous pollutants in aquatic environments; however, very little study is done on their occurrence and fate at drinking water treatment plants (DWTPs). Though, the toxic effect of microplastics on human health is not yet well established; there is global concern about their possible ill effect on the human. Hence, the present study evaluates the occurrence of microplastics at different treatment stages of a typical DWTP with pulse clarification and its removal efficiency. In the test DWTP, raw water, sourced from river Ganga, was found to contain microplastics 17.88 items/L. Cumulative microplastic removal at key treatment stages viz. pulse clarification and sand filtration was found to be 63% and 85%, respectively. The study also revealed higher microplastic abundance on the sand filter bed due to the screening effect. The most frequently occurring microplastics were fibers and films/fragments with polyethylene terephthalate and polyethylene as a major chemical type. The t-distributed stochastic neighbor embedding machine learning algorithm revealed a strong association between microplastic abundance with turbidity, phosphate and nitrate. The test DWTP with a pulse clarification system was having comparable microplastics removal efficiency with previously reported advanced DWTPs.
[Display omitted]
•Microplastic occurrence was analyzed in a DWTP equipped with pulse clarifier.•Microplastic content was reduced along the water treatment stages.•DWTP with pulse clarifier was capable of removing 85% microplastics.•Microplastic removal was correlated with pollution parameters. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2021.125347 |