Loading…
Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches
[Display omitted] •A novel hybrid model, namely LMT, was applied for groundwater potential mapping.•The result of LMT was validated using AUC-ROC method.•The accuracy of LMT was comprised with C4.5 and SVM models.•The capability and robustness of all three models were assessed.•Relative slope positi...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2018-10, Vol.565, p.248-261 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•A novel hybrid model, namely LMT, was applied for groundwater potential mapping.•The result of LMT was validated using AUC-ROC method.•The accuracy of LMT was comprised with C4.5 and SVM models.•The capability and robustness of all three models were assessed.•Relative slope position (RSP) was the most important conditioning factor.
Sustainable water resources management in arid and semi-arid areas needs robust models, which allow accurate and reliable predictive modeling. This issue has motivated the researchers to develop hybrid models that offer solutions on modelling problems and accurate predictions of groundwater potential zonation. For this purpose, this research aims to investigate the capability and robustness of a novel hybrid model, namely the logistic model tree (LMT) and compares it with state-of-the-art models such as the support vector machine and C4.5 models that locate potential zones for groundwater springs. A spring location dataset consisting of 359 springs was provided by field surveys and national reports and from which three different sample data sets (S1–S3) were randomly prepared (70% for training and 30% for validation). Additionally, 16 spring-related factors were analyzed using regression logistic analysis to find which factors play a significant role in spring occurrence. Twelve significant geo-environmental and morphometric factors were identified and applied in all models. The accuracy of models was evaluated by three different threshold-dependent and –Independent methods including efficiency (E), true skill statistic (TSS), and area under the receiver operating characteristics curve (AUC-ROC) methods. Results showed that the LMT model had the highest accuracy performance for all three validation datasets (Emean = 0.860, TSSmean = 0.718, AUC-ROCmean = 0.904); although a slight sensitivity to change in input data was sometimes observed for this model. Furthermore, the findings showed that relative slope position (RSP) was the most important factor followed by distance from faults and lithology. |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2018.08.027 |