Loading…

Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory

[Display omitted] •Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results. Floods are one of the most widespre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2020-11, Vol.590, p.125275, Article 125275
Main Authors: Gudiyangada Nachappa, Thimmaiah, Tavakkoli Piralilou, Sepideh, Gholamnia, Khalil, Ghorbanzadeh, Omid, Rahmati, Omid, Blaschke, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3
cites cdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3
container_end_page
container_issue
container_start_page 125275
container_title Journal of hydrology (Amsterdam)
container_volume 590
creator Gudiyangada Nachappa, Thimmaiah
Tavakkoli Piralilou, Sepideh
Gholamnia, Khalil
Ghorbanzadeh, Omid
Rahmati, Omid
Blaschke, Thomas
description [Display omitted] •Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results. Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.
doi_str_mv 10.1016/j.jhydrol.2020.125275
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jhydrol_2020_125275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169420307356</els_id><sourcerecordid>S0022169420307356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIPkDSLEd53VCqFBAqsSBcrYce0M2ykt2CsqFb8dVe2cvszu7M1oNIbecrTjj6X2zaurZuqFdCSYCJxKRJWdkwfOsiETGsnOyYEyIiKeFvCRX3jcsVBzLBfndtMNgqd97A-OEJbY4zbTT44j9F_3BqQ6DqbEH2oJ2fWDvaLdvJ4yMwwkcamrBoMehp7rX7ezRh8ZS6D10ZQt07w9WT9CNPtzTj1pXAXY1DG6-JheVbj3cnHBJPjfPu_VrtH1_eVs_biMTs2KK8lxmuRAgDS9sydKU5RVUaSmKKuYlZMKmRaFLK2OpGS9kwmSVxoJXYS1LsPGSJEdf4wbvHVRqdNhpNyvO1CFE1ahTiOoQojqGGHQPRx2E574RnPIGoTdg0YGZlB3wH4c_KrOAug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</title><source>ScienceDirect Journals</source><creator>Gudiyangada Nachappa, Thimmaiah ; Tavakkoli Piralilou, Sepideh ; Gholamnia, Khalil ; Ghorbanzadeh, Omid ; Rahmati, Omid ; Blaschke, Thomas</creator><creatorcontrib>Gudiyangada Nachappa, Thimmaiah ; Tavakkoli Piralilou, Sepideh ; Gholamnia, Khalil ; Ghorbanzadeh, Omid ; Rahmati, Omid ; Blaschke, Thomas</creatorcontrib><description>[Display omitted] •Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results. Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2020.125275</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analytical hierarchical process (AHP) ; Analytical network process (ANP) ; Dempster Shafer Theory (DST) ; Flood susceptibility ; Random forest (RF) ; Support vector machine (SVM)</subject><ispartof>Journal of hydrology (Amsterdam), 2020-11, Vol.590, p.125275, Article 125275</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</citedby><cites>FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</cites><orcidid>0000-0002-1341-3264 ; 0000-0002-9664-8770 ; 0000-0002-1860-8458 ; 0000-0001-5672-8525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gudiyangada Nachappa, Thimmaiah</creatorcontrib><creatorcontrib>Tavakkoli Piralilou, Sepideh</creatorcontrib><creatorcontrib>Gholamnia, Khalil</creatorcontrib><creatorcontrib>Ghorbanzadeh, Omid</creatorcontrib><creatorcontrib>Rahmati, Omid</creatorcontrib><creatorcontrib>Blaschke, Thomas</creatorcontrib><title>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</title><title>Journal of hydrology (Amsterdam)</title><description>[Display omitted] •Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results. Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.</description><subject>Analytical hierarchical process (AHP)</subject><subject>Analytical network process (ANP)</subject><subject>Dempster Shafer Theory (DST)</subject><subject>Flood susceptibility</subject><subject>Random forest (RF)</subject><subject>Support vector machine (SVM)</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIPkDSLEd53VCqFBAqsSBcrYce0M2ykt2CsqFb8dVe2cvszu7M1oNIbecrTjj6X2zaurZuqFdCSYCJxKRJWdkwfOsiETGsnOyYEyIiKeFvCRX3jcsVBzLBfndtMNgqd97A-OEJbY4zbTT44j9F_3BqQ6DqbEH2oJ2fWDvaLdvJ4yMwwkcamrBoMehp7rX7ezRh8ZS6D10ZQt07w9WT9CNPtzTj1pXAXY1DG6-JheVbj3cnHBJPjfPu_VrtH1_eVs_biMTs2KK8lxmuRAgDS9sydKU5RVUaSmKKuYlZMKmRaFLK2OpGS9kwmSVxoJXYS1LsPGSJEdf4wbvHVRqdNhpNyvO1CFE1ahTiOoQojqGGHQPRx2E574RnPIGoTdg0YGZlB3wH4c_KrOAug</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Gudiyangada Nachappa, Thimmaiah</creator><creator>Tavakkoli Piralilou, Sepideh</creator><creator>Gholamnia, Khalil</creator><creator>Ghorbanzadeh, Omid</creator><creator>Rahmati, Omid</creator><creator>Blaschke, Thomas</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1341-3264</orcidid><orcidid>https://orcid.org/0000-0002-9664-8770</orcidid><orcidid>https://orcid.org/0000-0002-1860-8458</orcidid><orcidid>https://orcid.org/0000-0001-5672-8525</orcidid></search><sort><creationdate>202011</creationdate><title>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</title><author>Gudiyangada Nachappa, Thimmaiah ; Tavakkoli Piralilou, Sepideh ; Gholamnia, Khalil ; Ghorbanzadeh, Omid ; Rahmati, Omid ; Blaschke, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical hierarchical process (AHP)</topic><topic>Analytical network process (ANP)</topic><topic>Dempster Shafer Theory (DST)</topic><topic>Flood susceptibility</topic><topic>Random forest (RF)</topic><topic>Support vector machine (SVM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gudiyangada Nachappa, Thimmaiah</creatorcontrib><creatorcontrib>Tavakkoli Piralilou, Sepideh</creatorcontrib><creatorcontrib>Gholamnia, Khalil</creatorcontrib><creatorcontrib>Ghorbanzadeh, Omid</creatorcontrib><creatorcontrib>Rahmati, Omid</creatorcontrib><creatorcontrib>Blaschke, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudiyangada Nachappa, Thimmaiah</au><au>Tavakkoli Piralilou, Sepideh</au><au>Gholamnia, Khalil</au><au>Ghorbanzadeh, Omid</au><au>Rahmati, Omid</au><au>Blaschke, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2020-11</date><risdate>2020</risdate><volume>590</volume><spage>125275</spage><pages>125275-</pages><artnum>125275</artnum><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>[Display omitted] •Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results. Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2020.125275</doi><orcidid>https://orcid.org/0000-0002-1341-3264</orcidid><orcidid>https://orcid.org/0000-0002-9664-8770</orcidid><orcidid>https://orcid.org/0000-0002-1860-8458</orcidid><orcidid>https://orcid.org/0000-0001-5672-8525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2020-11, Vol.590, p.125275, Article 125275
issn 0022-1694
1879-2707
language eng
recordid cdi_crossref_primary_10_1016_j_jhydrol_2020_125275
source ScienceDirect Journals
subjects Analytical hierarchical process (AHP)
Analytical network process (ANP)
Dempster Shafer Theory (DST)
Flood susceptibility
Random forest (RF)
Support vector machine (SVM)
title Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flood%20susceptibility%20mapping%20with%20machine%20learning,%20multi-criteria%20decision%20analysis%20and%20ensemble%20using%20Dempster%20Shafer%20Theory&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gudiyangada%20Nachappa,%20Thimmaiah&rft.date=2020-11&rft.volume=590&rft.spage=125275&rft.pages=125275-&rft.artnum=125275&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2020.125275&rft_dat=%3Celsevier_cross%3ES0022169420307356%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true