Loading…
Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory
[Display omitted] •Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results. Floods are one of the most widespre...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2020-11, Vol.590, p.125275, Article 125275 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3 |
container_end_page | |
container_issue | |
container_start_page | 125275 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 590 |
creator | Gudiyangada Nachappa, Thimmaiah Tavakkoli Piralilou, Sepideh Gholamnia, Khalil Ghorbanzadeh, Omid Rahmati, Omid Blaschke, Thomas |
description | [Display omitted]
•Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results.
Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models. |
doi_str_mv | 10.1016/j.jhydrol.2020.125275 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jhydrol_2020_125275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169420307356</els_id><sourcerecordid>S0022169420307356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIPkDSLEd53VCqFBAqsSBcrYce0M2ykt2CsqFb8dVe2cvszu7M1oNIbecrTjj6X2zaurZuqFdCSYCJxKRJWdkwfOsiETGsnOyYEyIiKeFvCRX3jcsVBzLBfndtMNgqd97A-OEJbY4zbTT44j9F_3BqQ6DqbEH2oJ2fWDvaLdvJ4yMwwkcamrBoMehp7rX7ezRh8ZS6D10ZQt07w9WT9CNPtzTj1pXAXY1DG6-JheVbj3cnHBJPjfPu_VrtH1_eVs_biMTs2KK8lxmuRAgDS9sydKU5RVUaSmKKuYlZMKmRaFLK2OpGS9kwmSVxoJXYS1LsPGSJEdf4wbvHVRqdNhpNyvO1CFE1ahTiOoQojqGGHQPRx2E574RnPIGoTdg0YGZlB3wH4c_KrOAug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</title><source>ScienceDirect Journals</source><creator>Gudiyangada Nachappa, Thimmaiah ; Tavakkoli Piralilou, Sepideh ; Gholamnia, Khalil ; Ghorbanzadeh, Omid ; Rahmati, Omid ; Blaschke, Thomas</creator><creatorcontrib>Gudiyangada Nachappa, Thimmaiah ; Tavakkoli Piralilou, Sepideh ; Gholamnia, Khalil ; Ghorbanzadeh, Omid ; Rahmati, Omid ; Blaschke, Thomas</creatorcontrib><description>[Display omitted]
•Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results.
Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2020.125275</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analytical hierarchical process (AHP) ; Analytical network process (ANP) ; Dempster Shafer Theory (DST) ; Flood susceptibility ; Random forest (RF) ; Support vector machine (SVM)</subject><ispartof>Journal of hydrology (Amsterdam), 2020-11, Vol.590, p.125275, Article 125275</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</citedby><cites>FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</cites><orcidid>0000-0002-1341-3264 ; 0000-0002-9664-8770 ; 0000-0002-1860-8458 ; 0000-0001-5672-8525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gudiyangada Nachappa, Thimmaiah</creatorcontrib><creatorcontrib>Tavakkoli Piralilou, Sepideh</creatorcontrib><creatorcontrib>Gholamnia, Khalil</creatorcontrib><creatorcontrib>Ghorbanzadeh, Omid</creatorcontrib><creatorcontrib>Rahmati, Omid</creatorcontrib><creatorcontrib>Blaschke, Thomas</creatorcontrib><title>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</title><title>Journal of hydrology (Amsterdam)</title><description>[Display omitted]
•Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results.
Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.</description><subject>Analytical hierarchical process (AHP)</subject><subject>Analytical network process (ANP)</subject><subject>Dempster Shafer Theory (DST)</subject><subject>Flood susceptibility</subject><subject>Random forest (RF)</subject><subject>Support vector machine (SVM)</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIPkDSLEd53VCqFBAqsSBcrYce0M2ykt2CsqFb8dVe2cvszu7M1oNIbecrTjj6X2zaurZuqFdCSYCJxKRJWdkwfOsiETGsnOyYEyIiKeFvCRX3jcsVBzLBfndtMNgqd97A-OEJbY4zbTT44j9F_3BqQ6DqbEH2oJ2fWDvaLdvJ4yMwwkcamrBoMehp7rX7ezRh8ZS6D10ZQt07w9WT9CNPtzTj1pXAXY1DG6-JheVbj3cnHBJPjfPu_VrtH1_eVs_biMTs2KK8lxmuRAgDS9sydKU5RVUaSmKKuYlZMKmRaFLK2OpGS9kwmSVxoJXYS1LsPGSJEdf4wbvHVRqdNhpNyvO1CFE1ahTiOoQojqGGHQPRx2E574RnPIGoTdg0YGZlB3wH4c_KrOAug</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Gudiyangada Nachappa, Thimmaiah</creator><creator>Tavakkoli Piralilou, Sepideh</creator><creator>Gholamnia, Khalil</creator><creator>Ghorbanzadeh, Omid</creator><creator>Rahmati, Omid</creator><creator>Blaschke, Thomas</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1341-3264</orcidid><orcidid>https://orcid.org/0000-0002-9664-8770</orcidid><orcidid>https://orcid.org/0000-0002-1860-8458</orcidid><orcidid>https://orcid.org/0000-0001-5672-8525</orcidid></search><sort><creationdate>202011</creationdate><title>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</title><author>Gudiyangada Nachappa, Thimmaiah ; Tavakkoli Piralilou, Sepideh ; Gholamnia, Khalil ; Ghorbanzadeh, Omid ; Rahmati, Omid ; Blaschke, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical hierarchical process (AHP)</topic><topic>Analytical network process (ANP)</topic><topic>Dempster Shafer Theory (DST)</topic><topic>Flood susceptibility</topic><topic>Random forest (RF)</topic><topic>Support vector machine (SVM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gudiyangada Nachappa, Thimmaiah</creatorcontrib><creatorcontrib>Tavakkoli Piralilou, Sepideh</creatorcontrib><creatorcontrib>Gholamnia, Khalil</creatorcontrib><creatorcontrib>Ghorbanzadeh, Omid</creatorcontrib><creatorcontrib>Rahmati, Omid</creatorcontrib><creatorcontrib>Blaschke, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudiyangada Nachappa, Thimmaiah</au><au>Tavakkoli Piralilou, Sepideh</au><au>Gholamnia, Khalil</au><au>Ghorbanzadeh, Omid</au><au>Rahmati, Omid</au><au>Blaschke, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2020-11</date><risdate>2020</risdate><volume>590</volume><spage>125275</spage><pages>125275-</pages><artnum>125275</artnum><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>[Display omitted]
•Application of knowledge-based spatial decision support system for flood susceptibility mapping.•Performance of data-base machine learning models for flood susceptibility mapping.•Evaluation of Dempster Shafer Theory for optimization of results.
Floods are one of the most widespread natural hazards occurring across the globe. The main objective of this study was to produce flood susceptibility maps for the province of Salzburg, Austria, using two multi-criteria decision analysis (MCDA) models including analytical hierarchical process (AHP) and analytical network process (ANP) and two machine learning (ML) models including random forest (RF) and support vector machine (SVM). Additionally, we compare which of the MCDA and ML models are better suited for flood susceptibility and evaluate the use of Dempster Shafer Theory (DST) for optimising the resulting flood susceptibility maps based on eleven flood conditioning factors: elevation, slope, aspect, topographic wetness index (TWI), stream power index (SPI), normalised difference vegetation index (NDVI), geology, rainfall, land cover, distance to roads and distance to drainage. The accuracy evaluation of the flood susceptibility maps through the AUC (area under the receiver operating characteristic curve) method along with the relative flood density (R-Index) shows that RF (AUC = 87.8%) and SVM (AUC = 87%) outperform the ANP (AUC = 86.6%) and AHP (AUC = 85.9%) models. Therefore, the predictive performance of ML models was slightly better than the MCDA models. The DST could further increase the accuracy of both ML models (AUC = 88.3%) and MCDA models (AUC = 87.3%). However, the best accuracy (AUC = 89.3%) is reached through an ensemble of all four models.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2020.125275</doi><orcidid>https://orcid.org/0000-0002-1341-3264</orcidid><orcidid>https://orcid.org/0000-0002-9664-8770</orcidid><orcidid>https://orcid.org/0000-0002-1860-8458</orcidid><orcidid>https://orcid.org/0000-0001-5672-8525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2020-11, Vol.590, p.125275, Article 125275 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jhydrol_2020_125275 |
source | ScienceDirect Journals |
subjects | Analytical hierarchical process (AHP) Analytical network process (ANP) Dempster Shafer Theory (DST) Flood susceptibility Random forest (RF) Support vector machine (SVM) |
title | Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flood%20susceptibility%20mapping%20with%20machine%20learning,%20multi-criteria%20decision%20analysis%20and%20ensemble%20using%20Dempster%20Shafer%20Theory&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gudiyangada%20Nachappa,%20Thimmaiah&rft.date=2020-11&rft.volume=590&rft.spage=125275&rft.pages=125275-&rft.artnum=125275&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2020.125275&rft_dat=%3Celsevier_cross%3ES0022169420307356%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-8847822e4c19db06608fef6b29f31be72d699abd434a0194504f6321ff314bed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |