Loading…

Analytical estimation of sea-level rise impacts on the freshwater lenses of elliptical islands with sloping shorelines

•Freshwater resources in elliptical islands are assessed analytically.•Dispersive correction factor applied to floating island lenses for the first time.•Islands with aspect ratios closest to unity have larger fresh groundwater storage.•Sea-level rise may increase the freshwater storage of a truncat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2024-02, Vol.629, p.130511, Article 130511
Main Authors: Yan, Min, Solórzano-Rivas, S. Cristina, Werner, Adrian D., Lu, Chunhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Freshwater resources in elliptical islands are assessed analytically.•Dispersive correction factor applied to floating island lenses for the first time.•Islands with aspect ratios closest to unity have larger fresh groundwater storage.•Sea-level rise may increase the freshwater storage of a truncated lens. The vulnerability of island freshwater lenses to rising sea levels has been assessed previously using sharp-interface analytical solutions that consider islands as circular or two-dimensional strips, or the lenses are treated as entirely underlain by seawater. However, many islands do not fit these basic conditions. The current study develops an analytical solution for the freshwater-saltwater interface in elliptical islands where the interface intercepts the aquifer base, and explores (for the first time for island lenses) the applicability of a dispersion correction to the analytical solution. An analysis of the lens response to sea-level rise (SLR) and the accompanying land-surface inundation (LSI) shows that for lenses entirely underlain by seawater, the primary impact of SLR is likely the associated LSI. Counterintuitively, lenses in contact with the aquifer basement may experience an increase in the freshwater volume with SLR, although this requires that LSI is limited (e.g., the shoreline is steep) and the water table is sufficiently deep (below the land surface) to allow it to rise commensurately with SLR. The analysis also shows that as the aspect ratio of the elliptical island increases (i.e., larger values approach strip islands and circular islands have a value of 1), the lens volume decreases (for a given island area). Thus, circular islands have the maximum freshwater storage per island area. Specifically, for typical island aquifer conditions, freshwater storage decreased over 50% as a/b increased from 1 to 10. The results obtained from this study and the new analytical solution are expected to assist in the rapid assessment of the freshwater resources of elliptical-like islands.
ISSN:0022-1694
1879-2707
DOI:10.1016/j.jhydrol.2023.130511