Loading…

Hybrid H2/Al dust explosions in Siwek sphere

Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum...

Full description

Saved in:
Bibliographic Details
Published in:Journal of loss prevention in the process industries 2015-07, Vol.36, p.509-521
Main Authors: Denkevits, A., Hoess, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER. •Explosion behaviour of hybrid Al dust/H2 mixtures was studied in a Siwek sphere.•The mixtures exploded, depending on fuel concentrations, in two- or one-step regime.•In two-step regime, the hydrogen burned out first, followed by the dust explosion consuming the resting oxygen.•In one-step regime the both components exploded together competing for the air oxygen.
ISSN:0950-4230
DOI:10.1016/j.jlp.2015.03.024