Loading…
Improved models of failure time for atmospheric tanks under the coupling effect of multiple pool fires
Fire accidents of chemical installations may cause domino effects in atmospheric tank farms, where a large amount of hazardous substances are stored or processed. Pool fire is a major form of fire accidents, and the thermal radiation from pool fire is the primary hazard of domino accidents. The coup...
Saved in:
Published in: | Journal of loss prevention in the process industries 2023-02, Vol.81, p.104957, Article 104957 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fire accidents of chemical installations may cause domino effects in atmospheric tank farms, where a large amount of hazardous substances are stored or processed. Pool fire is a major form of fire accidents, and the thermal radiation from pool fire is the primary hazard of domino accidents. The coupling of multiple pool fires is a realistic and important accident phenomenon that enhances the propagation of domino accidents. However, previous research has mostly focused on the escalation of domino accidents induced by a single pool fire. To overcome the drawback, in this study, the failure of a storage tank under the coupling effect of multiple pool fires was studied in view of spatial and temporal synergistic process. The historical accident statistics indicated that the accident scenario of two-pool fires accounted for 30.6% in pool fires. The domino accident scenario involving three tanks is analyzed, and the typical layout of tanks is isosceles right triangle based on Chinese standard “GB50341-2014”. The thermal response and damage of a target tank heated by pool fires were numerically investigated. The volume of 500 m3, 3000 m3, 5000 m3 and 10000 m3 were selected. Flame temperature was obtained by FDS, and then was input onto the finite element model. The temperature field and stress field of target tanks were simulated by ABAQUS. The results showed that the temperature rise rate of the target tanks under multiple pool fires was higher than that under a single pool fire. The failure time of the tank under the coupling effect of multiple fires was lower than that under the superposition of multiple fires without the first stage. The stress and yield strength were compared to judge the failure of the target tank. The model of failure time for the tank under the coupling effect of pool fires was established. Through the verification, the deviation of this model is 4.02%, which is better than the deviation of 15.76% with Cozzani's model.
•A quantitative model that can be used in failure time of atmospheric tank under thermal radiation coupling is proposed.•The improved model takes spatial and temporal effect of multiple pool fires into account.•Numerical simulation is set up with different chemicals, diameters, heights, distances.•The model is more accurate in predicting the failure time of secondary accident with pool fire. |
---|---|
ISSN: | 0950-4230 |
DOI: | 10.1016/j.jlp.2022.104957 |