Loading…
Bayesian networks based laboratory retrofitting towards inherent safety: A risk-based implementation framework
Over the years, a number of high-profile laboratory accidents involving severe injuries, fatalities, and economic losses have been reported, prompting a significant increase in efforts towards laboratory safety. However, the dominant safety measures rely excessively on add-on safeguards such as spri...
Saved in:
Published in: | Journal of loss prevention in the process industries 2023-07, Vol.83, p.105036, Article 105036 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the years, a number of high-profile laboratory accidents involving severe injuries, fatalities, and economic losses have been reported, prompting a significant increase in efforts towards laboratory safety. However, the dominant safety measures rely excessively on add-on safeguards such as sprinklers and respirators and pay little attention to reducing the hazardous factors at their sources. This study introduced the inherent safety concept to minimize laboratory hazards and developed a dedicated implementation tool called Generic Laboratory Safety Metric (GLSM). The Traditional Laboratory Safety Checklist (TLSC) was first used to represent the safety indicators, and then the Precedence Chart (PC) and Bayesian Networks (BN) methods were used to reconcile the safety indicators to develop the GLSM. The developed GLSM was subsequently demonstrated through a case study of a university laboratory. The results revealed that the safety level increased from 2.44 to 3.52 after the risk-based inherently safer retrofitting, thus creating laboratory conditions with a relatively satisfactory safety level. This work presented a set of generic solutions to laboratory retrofitting towards inherent safety with a novel GLSM as the implementation tool. The proposed GLSM would contribute to risk quantification and identification of key risk factors for assigning targeted and fundamental safety measures to achieve inherently safer laboratories.
•Laboratory safety risk identifications and assessment.•Generic Laboratory Safety Metric (RLSM) for laboratory safety risk quantification.•Bayesian Networks (BN) based laboratory safety risk measurement.•Safety Improvement Potential Index (SIPI) based ranking for risk contributors.•Risk-based laboratory retrofitting towards inherent safety. |
---|---|
ISSN: | 0950-4230 |
DOI: | 10.1016/j.jlp.2023.105036 |