Loading…
Soluble and insoluble polymer-inorganic systems based on poly(methyl methacrylate), modified with ZrO2-LnO1.5 (Ln = Eu, Tb) nanoparticles: Comparison of their photoluminescence
The study of the lanthanide ion luminescence as a function of their environment in polymer-inorganic composites is necessary for better understanding of the electron energy transfer processes in a condensed state. From a practical point of view, these materials are promising for optics and medicine....
Saved in:
Published in: | Journal of luminescence 2019-03, Vol.207, p.157-168 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of the lanthanide ion luminescence as a function of their environment in polymer-inorganic composites is necessary for better understanding of the electron energy transfer processes in a condensed state. From a practical point of view, these materials are promising for optics and medicine. The nanoparticles of ZrO2-LnO1.5 (Ln = Eu, Tb) solid solutions were synthesized by hydrothermal method. The surface functionalization of the obtained nanoparticles by vinyl groups was carried out using 3-(trimethoxysilyl)propyl methacrylate. Soluble and cross-linked composites based on poly(methyl methacrylate) with ZrO2-LnO1.5 nanoparticles were synthesized using radical polymerization in solution and bulk. Molecular weight, thermal stability, and microhardness of the obtained composite materials were determined. The influence of both the polymerization conditions and the forming composite structure on the lanthanide ion photoluminescence in ZrO2 nanoparticles covalently bonded to the polymer matrix was studied. The combination of ZrO2-EuO1.5 and ZrO2-TbO1.5 nanoparticles in the poly(methyl methacrylate) resulted in the production of composites with photoluminescence spectra overlapping the red and green regions of the visible range. It was shown that the structure of the composite affects the absorbing capacity of luminescent centers and allows shifting the excitation spectrum in the longer wavelength region. |
---|---|
ISSN: | 0022-2313 1872-7883 |
DOI: | 10.1016/j.jlumin.2018.11.011 |