Loading…
Tunable blue-red dual emission via energy transfer in Na4CaSi3O9: Ce3+, Mn2+ phosphors for plant growth LED
Along with the rapid development of modern agriculture, plant growth requires better light quality. Blue and red light play a crucial role in plant growth, so achieving blue-red dual light emission is urgently needed. The energy transfer (ET) between two independent luminous centers is an effective...
Saved in:
Published in: | Journal of luminescence 2021-07, Vol.235, p.118029, Article 118029 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Along with the rapid development of modern agriculture, plant growth requires better light quality. Blue and red light play a crucial role in plant growth, so achieving blue-red dual light emission is urgently needed. The energy transfer (ET) between two independent luminous centers is an effective means to regulate the blue-red dual emission. Hence, Ce3+-Mn2+ co-doped Na4CaSi3O9 (NCSO) phosphors are successfully synthesized by a conventional high-temperature solid-state method. The crystal structure and phase purity of NCSO phosphors are confirmed by X-ray powder diffraction (XRD) and Rietveld structure refinement. Ce3+ and Mn2+ co-doped NCSO phosphors exhibit blue - red dual emission under the excitation of 336 nm. The blue emission mainly comes from the 5d-4f transition of Ce3+, while the red emission belongs to the 4T1(4G)-6A1(6S) spin-forbidden transition of Mn2+. The emission spectra of NCSO: Ce3+, Mn2+ is in good agreement with the absorption spectra of chlorophyll. The ET process from Ce3+ to Mn2+ is studied and the temperature-dependent luminescence is examined to verify the thermal stability of phosphor. These results indicate that the as-obtained phosphors may have potential applications in plant growth lighting.
•The tunable blue-red dual emission phosphors were synthesized.•PL spectra match well with the absorption spectra of the chlorophylls.•The energy transfer process from Ce3+ to Mn2+ was investigated. |
---|---|
ISSN: | 0022-2313 1872-7883 |
DOI: | 10.1016/j.jlumin.2021.118029 |