Loading…
Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity
The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be...
Saved in:
Published in: | Journal of mathematical analysis and applications 2020-03, Vol.483 (2), p.123633, Article 123633 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03 |
container_end_page | |
container_issue | 2 |
container_start_page | 123633 |
container_title | Journal of mathematical analysis and applications |
container_volume | 483 |
creator | Zhang, Yuanyuan Hu, Qiaoyi |
description | The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum. |
doi_str_mv | 10.1016/j.jmaa.2019.123633 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2019_123633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X19309011</els_id><sourcerecordid>S0022247X19309011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</originalsourceid><addsrcrecordid>eNp90LFOwzAQxnELgUQpvACTXyDFdhInllhQBRSpEgsINutin6lDEhc7perb01Jmppt-p09_Qq45m3HG5U07a3uAmWBczbjIZZ6fkAlnSmas5vkpmTAmRCaK6v2cXKTUMsZ5WfEJgTeET7rFrsvWIaEdMCXqQqTjCqkfRvyI0HRI-2C982jpHHpICbJF6HqKXxsYfRjo1o-rX2I2jTd0CEPnB4Tox90lOXPQJbz6u1Py-nD_Ml9ky-fHp_ndMjN5UYyZ44VTpeI1KqtEJUVTO2hsJQuFSuQKipqzquSCydrWyjFpG1MKKUtwJQeWT4k4_jUxpBTR6XX0PcSd5kwfIulWHyLpQyR9jLRHt0eE-2XfHqNOxuNg0PqIZtQ2-P_4D1u4cNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Yuanyuan ; Hu, Qiaoyi</creator><creatorcontrib>Zhang, Yuanyuan ; Hu, Qiaoyi</creatorcontrib><description>The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2019.123633</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Camassa-Holm equation ; Cubic nonlinearity ; Flow ; Weak well-posedness</subject><ispartof>Journal of mathematical analysis and applications, 2020-03, Vol.483 (2), p.123633, Article 123633</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</citedby><cites>FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Qiaoyi</creatorcontrib><title>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</title><title>Journal of mathematical analysis and applications</title><description>The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.</description><subject>Camassa-Holm equation</subject><subject>Cubic nonlinearity</subject><subject>Flow</subject><subject>Weak well-posedness</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQxnELgUQpvACTXyDFdhInllhQBRSpEgsINutin6lDEhc7perb01Jmppt-p09_Qq45m3HG5U07a3uAmWBczbjIZZ6fkAlnSmas5vkpmTAmRCaK6v2cXKTUMsZ5WfEJgTeET7rFrsvWIaEdMCXqQqTjCqkfRvyI0HRI-2C982jpHHpICbJF6HqKXxsYfRjo1o-rX2I2jTd0CEPnB4Tox90lOXPQJbz6u1Py-nD_Ml9ky-fHp_ndMjN5UYyZ44VTpeI1KqtEJUVTO2hsJQuFSuQKipqzquSCydrWyjFpG1MKKUtwJQeWT4k4_jUxpBTR6XX0PcSd5kwfIulWHyLpQyR9jLRHt0eE-2XfHqNOxuNg0PqIZtQ2-P_4D1u4cNM</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Zhang, Yuanyuan</creator><creator>Hu, Qiaoyi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200315</creationdate><title>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</title><author>Zhang, Yuanyuan ; Hu, Qiaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Camassa-Holm equation</topic><topic>Cubic nonlinearity</topic><topic>Flow</topic><topic>Weak well-posedness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Qiaoyi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuanyuan</au><au>Hu, Qiaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>483</volume><issue>2</issue><spage>123633</spage><pages>123633-</pages><artnum>123633</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2019.123633</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2020-03, Vol.483 (2), p.123633, Article 123633 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2019_123633 |
source | ScienceDirect Freedom Collection |
subjects | Camassa-Holm equation Cubic nonlinearity Flow Weak well-posedness |
title | Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20well-posedness%20for%20the%20integrable%20modified%20Camassa-Holm%20equation%20with%20the%20cubic%20nonlinearity&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Zhang,%20Yuanyuan&rft.date=2020-03-15&rft.volume=483&rft.issue=2&rft.spage=123633&rft.pages=123633-&rft.artnum=123633&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2019.123633&rft_dat=%3Celsevier_cross%3ES0022247X19309011%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |