Loading…

Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity

The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2020-03, Vol.483 (2), p.123633, Article 123633
Main Authors: Zhang, Yuanyuan, Hu, Qiaoyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03
cites cdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03
container_end_page
container_issue 2
container_start_page 123633
container_title Journal of mathematical analysis and applications
container_volume 483
creator Zhang, Yuanyuan
Hu, Qiaoyi
description The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.
doi_str_mv 10.1016/j.jmaa.2019.123633
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2019_123633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X19309011</els_id><sourcerecordid>S0022247X19309011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</originalsourceid><addsrcrecordid>eNp90LFOwzAQxnELgUQpvACTXyDFdhInllhQBRSpEgsINutin6lDEhc7perb01Jmppt-p09_Qq45m3HG5U07a3uAmWBczbjIZZ6fkAlnSmas5vkpmTAmRCaK6v2cXKTUMsZ5WfEJgTeET7rFrsvWIaEdMCXqQqTjCqkfRvyI0HRI-2C982jpHHpICbJF6HqKXxsYfRjo1o-rX2I2jTd0CEPnB4Tox90lOXPQJbz6u1Py-nD_Ml9ky-fHp_ndMjN5UYyZ44VTpeI1KqtEJUVTO2hsJQuFSuQKipqzquSCydrWyjFpG1MKKUtwJQeWT4k4_jUxpBTR6XX0PcSd5kwfIulWHyLpQyR9jLRHt0eE-2XfHqNOxuNg0PqIZtQ2-P_4D1u4cNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Yuanyuan ; Hu, Qiaoyi</creator><creatorcontrib>Zhang, Yuanyuan ; Hu, Qiaoyi</creatorcontrib><description>The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2019.123633</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Camassa-Holm equation ; Cubic nonlinearity ; Flow ; Weak well-posedness</subject><ispartof>Journal of mathematical analysis and applications, 2020-03, Vol.483 (2), p.123633, Article 123633</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</citedby><cites>FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Qiaoyi</creatorcontrib><title>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</title><title>Journal of mathematical analysis and applications</title><description>The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.</description><subject>Camassa-Holm equation</subject><subject>Cubic nonlinearity</subject><subject>Flow</subject><subject>Weak well-posedness</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQxnELgUQpvACTXyDFdhInllhQBRSpEgsINutin6lDEhc7perb01Jmppt-p09_Qq45m3HG5U07a3uAmWBczbjIZZ6fkAlnSmas5vkpmTAmRCaK6v2cXKTUMsZ5WfEJgTeET7rFrsvWIaEdMCXqQqTjCqkfRvyI0HRI-2C982jpHHpICbJF6HqKXxsYfRjo1o-rX2I2jTd0CEPnB4Tox90lOXPQJbz6u1Py-nD_Ml9ky-fHp_ndMjN5UYyZ44VTpeI1KqtEJUVTO2hsJQuFSuQKipqzquSCydrWyjFpG1MKKUtwJQeWT4k4_jUxpBTR6XX0PcSd5kwfIulWHyLpQyR9jLRHt0eE-2XfHqNOxuNg0PqIZtQ2-P_4D1u4cNM</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Zhang, Yuanyuan</creator><creator>Hu, Qiaoyi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200315</creationdate><title>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</title><author>Zhang, Yuanyuan ; Hu, Qiaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Camassa-Holm equation</topic><topic>Cubic nonlinearity</topic><topic>Flow</topic><topic>Weak well-posedness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Qiaoyi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuanyuan</au><au>Hu, Qiaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>483</volume><issue>2</issue><spage>123633</spage><pages>123633-</pages><artnum>123633</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The goal of this paper is supposed to investigate the weak well-posedness for the modified Camassa-Holm equation with cubic nonlinearity after given an initial data u0∈Hs(R)∩W2,∞(R)(1≤s≤2). Firstly, we deduce an ODE system, whose equivalence to problem (1.2) with a spatial initial condition will be verified later. Next, by studying the existence of the unique solution to the ODE system, we conclude the corresponding results of the original problem. Finally, we end up with the weak continuity of solutions to the PDE associated to the initial datum.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2019.123633</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2020-03, Vol.483 (2), p.123633, Article 123633
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2019_123633
source ScienceDirect Freedom Collection
subjects Camassa-Holm equation
Cubic nonlinearity
Flow
Weak well-posedness
title Weak well-posedness for the integrable modified Camassa-Holm equation with the cubic nonlinearity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20well-posedness%20for%20the%20integrable%20modified%20Camassa-Holm%20equation%20with%20the%20cubic%20nonlinearity&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Zhang,%20Yuanyuan&rft.date=2020-03-15&rft.volume=483&rft.issue=2&rft.spage=123633&rft.pages=123633-&rft.artnum=123633&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2019.123633&rft_dat=%3Celsevier_cross%3ES0022247X19309011%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-f14f95918e9d92762b8fabd7649e9239a48107512068d89f06dbc52665af51a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true