Loading…

Sharp inequalities for geometric Fourier transform and associated ambiguity function

The geometric Fourier transform defined using Clifford algebra plays an increasingly active role in modern data analysis, in particular for color image processing. However, due to the non-commutativity, it is hard to obtain many important analytic properties. In this paper, we prove several importan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2020-04, Vol.484 (2), p.123730, Article 123730
Main Author: Lian, Pan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833
cites cdi_FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833
container_end_page
container_issue 2
container_start_page 123730
container_title Journal of mathematical analysis and applications
container_volume 484
creator Lian, Pan
description The geometric Fourier transform defined using Clifford algebra plays an increasingly active role in modern data analysis, in particular for color image processing. However, due to the non-commutativity, it is hard to obtain many important analytic properties. In this paper, we prove several important sharp inequalities, including the Hausdorff-Young inequality and its converse, Pitt's inequality and Lieb's inequality for Clifford ambiguity functions. With these inequalities, several uncertainty principles with optimal constants are derived for the geometric Fourier transform. Most results in this paper are new even in the easier case, i.e. the quaternion setting. The method developed here also works for more general geometric Fourier transforms.
doi_str_mv 10.1016/j.jmaa.2019.123730
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2019_123730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X19309989</els_id><sourcerecordid>S0022247X19309989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKf9A6mzH0024EWKVUHwYAVvy2QzqRuapO5uhP57U-rZ0wwMz_C-D2O3AhYCRH7XLtoOcSFBlAshVaHgjM0ElHkGRqhzNgOQMpO6-LxkVzG2AEIsCzFjm_cvDHvue_oeceeTp8ibIfAtDR2l4B1fD2PwFHgK2Mfp1HHsa44xDs5jomntKr8dfTrwZuxd8kN_zS4a3EW6-Ztz9rF-3Kyes9e3p5fVw2vmlNYp04iAilSlVSl1bioCXedAThtpoKJGC0caG6VMVWNhQC1ljk1d5kZV0ig1Z_L014UhxkCN3QffYThYAfboxbb26MUevdiTlwm6P0E0JfuZmtnoPPWOah_IJVsP_j_8FwEebXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp inequalities for geometric Fourier transform and associated ambiguity function</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Lian, Pan</creator><creatorcontrib>Lian, Pan</creatorcontrib><description>The geometric Fourier transform defined using Clifford algebra plays an increasingly active role in modern data analysis, in particular for color image processing. However, due to the non-commutativity, it is hard to obtain many important analytic properties. In this paper, we prove several important sharp inequalities, including the Hausdorff-Young inequality and its converse, Pitt's inequality and Lieb's inequality for Clifford ambiguity functions. With these inequalities, several uncertainty principles with optimal constants are derived for the geometric Fourier transform. Most results in this paper are new even in the easier case, i.e. the quaternion setting. The method developed here also works for more general geometric Fourier transforms.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2019.123730</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Clifford algebra ; Geometric Fourier transform ; Hausdorff-Young inequality ; Quaternion ; Uncertainty principle</subject><ispartof>Journal of mathematical analysis and applications, 2020-04, Vol.484 (2), p.123730, Article 123730</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833</citedby><cites>FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lian, Pan</creatorcontrib><title>Sharp inequalities for geometric Fourier transform and associated ambiguity function</title><title>Journal of mathematical analysis and applications</title><description>The geometric Fourier transform defined using Clifford algebra plays an increasingly active role in modern data analysis, in particular for color image processing. However, due to the non-commutativity, it is hard to obtain many important analytic properties. In this paper, we prove several important sharp inequalities, including the Hausdorff-Young inequality and its converse, Pitt's inequality and Lieb's inequality for Clifford ambiguity functions. With these inequalities, several uncertainty principles with optimal constants are derived for the geometric Fourier transform. Most results in this paper are new even in the easier case, i.e. the quaternion setting. The method developed here also works for more general geometric Fourier transforms.</description><subject>Clifford algebra</subject><subject>Geometric Fourier transform</subject><subject>Hausdorff-Young inequality</subject><subject>Quaternion</subject><subject>Uncertainty principle</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKf9A6mzH0024EWKVUHwYAVvy2QzqRuapO5uhP57U-rZ0wwMz_C-D2O3AhYCRH7XLtoOcSFBlAshVaHgjM0ElHkGRqhzNgOQMpO6-LxkVzG2AEIsCzFjm_cvDHvue_oeceeTp8ibIfAtDR2l4B1fD2PwFHgK2Mfp1HHsa44xDs5jomntKr8dfTrwZuxd8kN_zS4a3EW6-Ztz9rF-3Kyes9e3p5fVw2vmlNYp04iAilSlVSl1bioCXedAThtpoKJGC0caG6VMVWNhQC1ljk1d5kZV0ig1Z_L014UhxkCN3QffYThYAfboxbb26MUevdiTlwm6P0E0JfuZmtnoPPWOah_IJVsP_j_8FwEebXI</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Lian, Pan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200415</creationdate><title>Sharp inequalities for geometric Fourier transform and associated ambiguity function</title><author>Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clifford algebra</topic><topic>Geometric Fourier transform</topic><topic>Hausdorff-Young inequality</topic><topic>Quaternion</topic><topic>Uncertainty principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp inequalities for geometric Fourier transform and associated ambiguity function</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>484</volume><issue>2</issue><spage>123730</spage><pages>123730-</pages><artnum>123730</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The geometric Fourier transform defined using Clifford algebra plays an increasingly active role in modern data analysis, in particular for color image processing. However, due to the non-commutativity, it is hard to obtain many important analytic properties. In this paper, we prove several important sharp inequalities, including the Hausdorff-Young inequality and its converse, Pitt's inequality and Lieb's inequality for Clifford ambiguity functions. With these inequalities, several uncertainty principles with optimal constants are derived for the geometric Fourier transform. Most results in this paper are new even in the easier case, i.e. the quaternion setting. The method developed here also works for more general geometric Fourier transforms.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2019.123730</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2020-04, Vol.484 (2), p.123730, Article 123730
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2019_123730
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Clifford algebra
Geometric Fourier transform
Hausdorff-Young inequality
Quaternion
Uncertainty principle
title Sharp inequalities for geometric Fourier transform and associated ambiguity function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20inequalities%20for%20geometric%20Fourier%20transform%20and%20associated%20ambiguity%20function&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Lian,%20Pan&rft.date=2020-04-15&rft.volume=484&rft.issue=2&rft.spage=123730&rft.pages=123730-&rft.artnum=123730&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2019.123730&rft_dat=%3Celsevier_cross%3ES0022247X19309989%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-4aa0a3e3b4392468be04d60ec48280bef41ce4af338bda7803526afd9683b2833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true