Loading…
The resonant cases and the Riemann problem for a model of two-phase flows
The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solution...
Saved in:
Published in: | Journal of mathematical analysis and applications 2021-02, Vol.494 (1), p.124578, Article 124578 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383 |
container_end_page | |
container_issue | 1 |
container_start_page | 124578 |
container_title | Journal of mathematical analysis and applications |
container_volume | 494 |
creator | Thanh, Mai Duc Cuong, Dao Huy Vinh, Duong Xuan |
description | The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed. |
doi_str_mv | 10.1016/j.jmaa.2020.124578 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2020_124578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X2030740X</els_id><sourcerecordid>S0022247X2030740X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwNW8QOqdvyQFN1L8KRQEqeBuuJncoQlJpswEi29vSly7OnDgOxw-xu4FrASI_KFdtT3iSoKcCqlNUV6whYB1nkEp1CVbAEiZSV18XbOblFoAIUwhFmy7PxCPlMKAw8gdJkoch5qPU_3RUI_DwI8xVB313IfIkfehpo4Hz8dTyI6HieC-C6d0y648donu_nLJPl-e95u3bPf-ut087TKnAMaMjNdr7XXuCmFqraTTqB1W4KAup8eYV6TQKYdSQlUabdY5OEQlC2-MKtWSyXnXxZBSJG-Psekx_lgB9izDtvYsw55l2FnGBD3OEE3PvhuKNrmGBkd1E8mNtg7Nf_gv2vlniQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The resonant cases and the Riemann problem for a model of two-phase flows</title><source>ScienceDirect Journals</source><creator>Thanh, Mai Duc ; Cuong, Dao Huy ; Vinh, Duong Xuan</creator><creatorcontrib>Thanh, Mai Duc ; Cuong, Dao Huy ; Vinh, Duong Xuan</creatorcontrib><description>The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2020.124578</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nonconservative ; Resonance ; Riemann problem ; Two-phase flow</subject><ispartof>Journal of mathematical analysis and applications, 2021-02, Vol.494 (1), p.124578, Article 124578</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</citedby><cites>FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thanh, Mai Duc</creatorcontrib><creatorcontrib>Cuong, Dao Huy</creatorcontrib><creatorcontrib>Vinh, Duong Xuan</creatorcontrib><title>The resonant cases and the Riemann problem for a model of two-phase flows</title><title>Journal of mathematical analysis and applications</title><description>The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.</description><subject>Nonconservative</subject><subject>Resonance</subject><subject>Riemann problem</subject><subject>Two-phase flow</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZfwNW8QOqdvyQFN1L8KRQEqeBuuJncoQlJpswEi29vSly7OnDgOxw-xu4FrASI_KFdtT3iSoKcCqlNUV6whYB1nkEp1CVbAEiZSV18XbOblFoAIUwhFmy7PxCPlMKAw8gdJkoch5qPU_3RUI_DwI8xVB313IfIkfehpo4Hz8dTyI6HieC-C6d0y648donu_nLJPl-e95u3bPf-ut087TKnAMaMjNdr7XXuCmFqraTTqB1W4KAup8eYV6TQKYdSQlUabdY5OEQlC2-MKtWSyXnXxZBSJG-Psekx_lgB9izDtvYsw55l2FnGBD3OEE3PvhuKNrmGBkd1E8mNtg7Nf_gv2vlniQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Thanh, Mai Duc</creator><creator>Cuong, Dao Huy</creator><creator>Vinh, Duong Xuan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>The resonant cases and the Riemann problem for a model of two-phase flows</title><author>Thanh, Mai Duc ; Cuong, Dao Huy ; Vinh, Duong Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Nonconservative</topic><topic>Resonance</topic><topic>Riemann problem</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanh, Mai Duc</creatorcontrib><creatorcontrib>Cuong, Dao Huy</creatorcontrib><creatorcontrib>Vinh, Duong Xuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanh, Mai Duc</au><au>Cuong, Dao Huy</au><au>Vinh, Duong Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The resonant cases and the Riemann problem for a model of two-phase flows</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>494</volume><issue>1</issue><spage>124578</spage><pages>124578-</pages><artnum>124578</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2020.124578</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2021-02, Vol.494 (1), p.124578, Article 124578 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2020_124578 |
source | ScienceDirect Journals |
subjects | Nonconservative Resonance Riemann problem Two-phase flow |
title | The resonant cases and the Riemann problem for a model of two-phase flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20resonant%20cases%20and%20the%20Riemann%20problem%20for%20a%20model%20of%20two-phase%20flows&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Thanh,%20Mai%20Duc&rft.date=2021-02-01&rft.volume=494&rft.issue=1&rft.spage=124578&rft.pages=124578-&rft.artnum=124578&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2020.124578&rft_dat=%3Celsevier_cross%3ES0022247X2030740X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |