Loading…

The resonant cases and the Riemann problem for a model of two-phase flows

The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solution...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2021-02, Vol.494 (1), p.124578, Article 124578
Main Authors: Thanh, Mai Duc, Cuong, Dao Huy, Vinh, Duong Xuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383
cites cdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383
container_end_page
container_issue 1
container_start_page 124578
container_title Journal of mathematical analysis and applications
container_volume 494
creator Thanh, Mai Duc
Cuong, Dao Huy
Vinh, Duong Xuan
description The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.
doi_str_mv 10.1016/j.jmaa.2020.124578
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2020_124578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X2030740X</els_id><sourcerecordid>S0022247X2030740X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwNW8QOqdvyQFN1L8KRQEqeBuuJncoQlJpswEi29vSly7OnDgOxw-xu4FrASI_KFdtT3iSoKcCqlNUV6whYB1nkEp1CVbAEiZSV18XbOblFoAIUwhFmy7PxCPlMKAw8gdJkoch5qPU_3RUI_DwI8xVB313IfIkfehpo4Hz8dTyI6HieC-C6d0y648donu_nLJPl-e95u3bPf-ut087TKnAMaMjNdr7XXuCmFqraTTqB1W4KAup8eYV6TQKYdSQlUabdY5OEQlC2-MKtWSyXnXxZBSJG-Psekx_lgB9izDtvYsw55l2FnGBD3OEE3PvhuKNrmGBkd1E8mNtg7Nf_gv2vlniQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The resonant cases and the Riemann problem for a model of two-phase flows</title><source>ScienceDirect Journals</source><creator>Thanh, Mai Duc ; Cuong, Dao Huy ; Vinh, Duong Xuan</creator><creatorcontrib>Thanh, Mai Duc ; Cuong, Dao Huy ; Vinh, Duong Xuan</creatorcontrib><description>The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2020.124578</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nonconservative ; Resonance ; Riemann problem ; Two-phase flow</subject><ispartof>Journal of mathematical analysis and applications, 2021-02, Vol.494 (1), p.124578, Article 124578</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</citedby><cites>FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thanh, Mai Duc</creatorcontrib><creatorcontrib>Cuong, Dao Huy</creatorcontrib><creatorcontrib>Vinh, Duong Xuan</creatorcontrib><title>The resonant cases and the Riemann problem for a model of two-phase flows</title><title>Journal of mathematical analysis and applications</title><description>The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.</description><subject>Nonconservative</subject><subject>Resonance</subject><subject>Riemann problem</subject><subject>Two-phase flow</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZfwNW8QOqdvyQFN1L8KRQEqeBuuJncoQlJpswEi29vSly7OnDgOxw-xu4FrASI_KFdtT3iSoKcCqlNUV6whYB1nkEp1CVbAEiZSV18XbOblFoAIUwhFmy7PxCPlMKAw8gdJkoch5qPU_3RUI_DwI8xVB313IfIkfehpo4Hz8dTyI6HieC-C6d0y648donu_nLJPl-e95u3bPf-ut087TKnAMaMjNdr7XXuCmFqraTTqB1W4KAup8eYV6TQKYdSQlUabdY5OEQlC2-MKtWSyXnXxZBSJG-Psekx_lgB9izDtvYsw55l2FnGBD3OEE3PvhuKNrmGBkd1E8mNtg7Nf_gv2vlniQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Thanh, Mai Duc</creator><creator>Cuong, Dao Huy</creator><creator>Vinh, Duong Xuan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>The resonant cases and the Riemann problem for a model of two-phase flows</title><author>Thanh, Mai Duc ; Cuong, Dao Huy ; Vinh, Duong Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Nonconservative</topic><topic>Resonance</topic><topic>Riemann problem</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanh, Mai Duc</creatorcontrib><creatorcontrib>Cuong, Dao Huy</creatorcontrib><creatorcontrib>Vinh, Duong Xuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanh, Mai Duc</au><au>Cuong, Dao Huy</au><au>Vinh, Duong Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The resonant cases and the Riemann problem for a model of two-phase flows</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>494</volume><issue>1</issue><spage>124578</spage><pages>124578-</pages><artnum>124578</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The resonant cases in the Riemann problem for a model of two-phase flows with resonance are investigated, which complete the construction of Riemann solutions. The model is given by a nonconservative hyperbolic system of balance laws. The phase decomposition method is developed to construct solutions in each phase in a relatively separated way, but still glued to each other via the contact discontinuities. Composite wave curves can be built and intersections of wave curves in each phase plane help to determine various configurations of Riemann solutions. In particular, solutions containing multiple waves propagating with the same shock speed are constructed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2020.124578</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2021-02, Vol.494 (1), p.124578, Article 124578
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2020_124578
source ScienceDirect Journals
subjects Nonconservative
Resonance
Riemann problem
Two-phase flow
title The resonant cases and the Riemann problem for a model of two-phase flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20resonant%20cases%20and%20the%20Riemann%20problem%20for%20a%20model%20of%20two-phase%20flows&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Thanh,%20Mai%20Duc&rft.date=2021-02-01&rft.volume=494&rft.issue=1&rft.spage=124578&rft.pages=124578-&rft.artnum=124578&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2020.124578&rft_dat=%3Celsevier_cross%3ES0022247X2030740X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-e5f494f46c715d432c4a4cab0c0d8109a6be3ac3ca220b8545960caa327f55383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true