Loading…

Matrix biorthogonal polynomials: Eigenvalue problems and non-Abelian discrete Painlevé equations

In this paper we use the Riemann–Hilbert problem, with jumps supported on appropriate curves in the complex plane, for matrix biorthogonal polynomials and apply it to find Sylvester systems of differential equations for the orthogonal polynomials and its second kind functions as well. For this aim,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2021-02, Vol.494 (2), p.124605, Article 124605
Main Authors: Branquinho, Amílcar, Foulquié Moreno, Ana, Mañas, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we use the Riemann–Hilbert problem, with jumps supported on appropriate curves in the complex plane, for matrix biorthogonal polynomials and apply it to find Sylvester systems of differential equations for the orthogonal polynomials and its second kind functions as well. For this aim, Sylvester type differential Pearson equations for the matrix of weights are shown to be instrumental. Several applications are given, in order of increasing complexity. First, a general discussion of non-Abelian Hermite biorthogonal polynomials on the real line, understood as those whose matrix of weights is a solution of a Sylvester type Pearson equation with coefficients first degree matrix polynomials, is given. All of these are applied to the discussion of possible scenarios leading to eigenvalue problems for second order linear differential operators with matrix eigenvalues. Nonlinear matrix difference equations are discussed next. Firstly, for the general Hermite situation a general non linear relation (non trivial because of the non commutativity features of the setting) for the recursion coefficients is gotten. In the next case of higher difficulty, degree two polynomials are allowed in the Pearson equation, but the discussion is simplified by considering only a left Pearson equation. In the case, the support of the measure is on an appropriate branch of a hyperbola. The recursion coefficients are shown to fulfill a non-Abelian extension of the alternate discrete Painlevé I equation. Finally, a discussion is given for the case of degree three polynomials as coefficients in the left Pearson equation characterizing the matrix of weights. However, for simplicity only odd polynomials are allowed. In this case, a new and more general matrix extension of the discrete Painlevé I equation is found.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124605