Loading…

Blow-up phenomena for a class of fourth order parabolic equation

A class of fourth order parabolic equation is studied in this paper. Some related blow-up results are obtained by applying the potential well theory, the concavity method and a series of differential-integral inequality techniques. More precisely, under some proper assumptions, the upper and lower b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2022-01, Vol.505 (1), p.125445, Article 125445
Main Authors: Shao, Xiangkun, Tang, Guo-ji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863
cites cdi_FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863
container_end_page
container_issue 1
container_start_page 125445
container_title Journal of mathematical analysis and applications
container_volume 505
creator Shao, Xiangkun
Tang, Guo-ji
description A class of fourth order parabolic equation is studied in this paper. Some related blow-up results are obtained by applying the potential well theory, the concavity method and a series of differential-integral inequality techniques. More precisely, under some proper assumptions, the upper and lower bounds of the blow-up time and the growth rate for blow-up solutions are estimated. Moreover, a new blow-up condition independent of the depth of the potential well is found. These results complement the recent results obtained in Han (2018).
doi_str_mv 10.1016/j.jmaa.2021.125445
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2021_125445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X21005242</els_id><sourcerecordid>S0022247X21005242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOP68gKu8QOtN2iQz4EId_IMBNwruwm3mhknpNDXpKL69Hca1m3M5i-9y-Bi7ElAKEPq6LdstYilBilJIVdfqiM0ELHQBc1EdsxmAlIWszccpO8u5BRBCGTFjt_dd_C52Ax821Mct9ch9TBy56zBnHv1Ud2nc8JjWlPiACZvYBcfpc4djiP0FO_HYZbr8u-fs_fHhbflcrF6fXpZ3q8LJCsZCG-8VyVorYzROsVAajWnQKULja0XT7Ea5CtA0ikAC6GZOpsLGSZrr6pzJw1-XYs6JvB1S2GL6sQLs3oFt7d6B3TuwBwcTdHOAaFr2FSjZ7AL1jtYhkRvtOob_8F8FgWSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blow-up phenomena for a class of fourth order parabolic equation</title><source>Elsevier</source><creator>Shao, Xiangkun ; Tang, Guo-ji</creator><creatorcontrib>Shao, Xiangkun ; Tang, Guo-ji</creatorcontrib><description>A class of fourth order parabolic equation is studied in this paper. Some related blow-up results are obtained by applying the potential well theory, the concavity method and a series of differential-integral inequality techniques. More precisely, under some proper assumptions, the upper and lower bounds of the blow-up time and the growth rate for blow-up solutions are estimated. Moreover, a new blow-up condition independent of the depth of the potential well is found. These results complement the recent results obtained in Han (2018).</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2021.125445</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Blow up ; Blow-up rate ; Fourth-order parabolic equation ; Lower bound ; Upper bound</subject><ispartof>Journal of mathematical analysis and applications, 2022-01, Vol.505 (1), p.125445, Article 125445</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863</citedby><cites>FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863</cites><orcidid>0000-0001-7609-2237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shao, Xiangkun</creatorcontrib><creatorcontrib>Tang, Guo-ji</creatorcontrib><title>Blow-up phenomena for a class of fourth order parabolic equation</title><title>Journal of mathematical analysis and applications</title><description>A class of fourth order parabolic equation is studied in this paper. Some related blow-up results are obtained by applying the potential well theory, the concavity method and a series of differential-integral inequality techniques. More precisely, under some proper assumptions, the upper and lower bounds of the blow-up time and the growth rate for blow-up solutions are estimated. Moreover, a new blow-up condition independent of the depth of the potential well is found. These results complement the recent results obtained in Han (2018).</description><subject>Blow up</subject><subject>Blow-up rate</subject><subject>Fourth-order parabolic equation</subject><subject>Lower bound</subject><subject>Upper bound</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOP68gKu8QOtN2iQz4EId_IMBNwruwm3mhknpNDXpKL69Hca1m3M5i-9y-Bi7ElAKEPq6LdstYilBilJIVdfqiM0ELHQBc1EdsxmAlIWszccpO8u5BRBCGTFjt_dd_C52Ax821Mct9ch9TBy56zBnHv1Ud2nc8JjWlPiACZvYBcfpc4djiP0FO_HYZbr8u-fs_fHhbflcrF6fXpZ3q8LJCsZCG-8VyVorYzROsVAajWnQKULja0XT7Ea5CtA0ikAC6GZOpsLGSZrr6pzJw1-XYs6JvB1S2GL6sQLs3oFt7d6B3TuwBwcTdHOAaFr2FSjZ7AL1jtYhkRvtOob_8F8FgWSo</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Shao, Xiangkun</creator><creator>Tang, Guo-ji</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7609-2237</orcidid></search><sort><creationdate>20220101</creationdate><title>Blow-up phenomena for a class of fourth order parabolic equation</title><author>Shao, Xiangkun ; Tang, Guo-ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blow up</topic><topic>Blow-up rate</topic><topic>Fourth-order parabolic equation</topic><topic>Lower bound</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Xiangkun</creatorcontrib><creatorcontrib>Tang, Guo-ji</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Xiangkun</au><au>Tang, Guo-ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up phenomena for a class of fourth order parabolic equation</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>505</volume><issue>1</issue><spage>125445</spage><pages>125445-</pages><artnum>125445</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>A class of fourth order parabolic equation is studied in this paper. Some related blow-up results are obtained by applying the potential well theory, the concavity method and a series of differential-integral inequality techniques. More precisely, under some proper assumptions, the upper and lower bounds of the blow-up time and the growth rate for blow-up solutions are estimated. Moreover, a new blow-up condition independent of the depth of the potential well is found. These results complement the recent results obtained in Han (2018).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2021.125445</doi><orcidid>https://orcid.org/0000-0001-7609-2237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2022-01, Vol.505 (1), p.125445, Article 125445
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2021_125445
source Elsevier
subjects Blow up
Blow-up rate
Fourth-order parabolic equation
Lower bound
Upper bound
title Blow-up phenomena for a class of fourth order parabolic equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20phenomena%20for%20a%20class%20of%20fourth%20order%20parabolic%20equation&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Shao,%20Xiangkun&rft.date=2022-01-01&rft.volume=505&rft.issue=1&rft.spage=125445&rft.pages=125445-&rft.artnum=125445&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2021.125445&rft_dat=%3Celsevier_cross%3ES0022247X21005242%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-67ff5e2465776a577956a77bac5ea7f45e125b5c30a7b5e02006b8e73abc2e863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true