Loading…
Linear operators associated with p-Dunford, p-Pettis and p-Bochner integrable functions with values in a Banach space
In the present paper, we study several aspects of linear operators associated with p-Bochner, p-Dunford and p-Pettis integrable functions defined on a finite measure space with values in a Banach space. Continuity and compactness properties of said operators are discussed in details. We investigate...
Saved in:
Published in: | Journal of mathematical analysis and applications 2022-10, Vol.514 (1), p.126269, Article 126269 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181t-203d2b0e8e4d55424fc15094e8683221efe0d25dc67de17eac51c9afa5bcbea93 |
container_end_page | |
container_issue | 1 |
container_start_page | 126269 |
container_title | Journal of mathematical analysis and applications |
container_volume | 514 |
creator | Mondal, Pratikshan Dey, Lakshmi Kanta Ali, Sk. Jaker |
description | In the present paper, we study several aspects of linear operators associated with p-Bochner, p-Dunford and p-Pettis integrable functions defined on a finite measure space with values in a Banach space. Continuity and compactness properties of said operators are discussed in details. We investigate the operators in the light of p-summingness and order boundedness. We study p′-Pettis representability and p′-Bochner representability of an operator T∈L(Lp(μ),X), p∈(1,∞). Equicompactness and collective compactness of a family of linear operators associated with a family of integrable functions are also studied. Some results on equicompactness and collective compactness are obtained in the sequel. |
doi_str_mv | 10.1016/j.jmaa.2022.126269 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2022_126269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X22002839</els_id><sourcerecordid>S0022247X22002839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-203d2b0e8e4d55424fc15094e8683221efe0d25dc67de17eac51c9afa5bcbea93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU_5AbYm6Td4cddPWNCDgrcwTaZuym5SklTx39ulnj3NDPM-w_AQcslZyhkvr_u03wOkggmRclGKsjkiC86aMmE1z47Jgk2bROTVxyk5C6FnjPOi4gsyboxF8NQN6CE6HyiE4JSBiJp-m7ilQ3I32s55fTW1rxijmTJWT8PKqa1FT42N-Omh3SHtRquicTbM7BfsRgxTgAJdgQW1pWEAhefkpINdwIu_uiTvD_dv66dk8_L4vL7dJIrXPCaCZVq0DGvMdVHkIu8UL1iTY13WmRAcO2RaFFqVlUZeIaiCqwY6KFrVIjTZkoj5rvIuBI-dHLzZg_-RnMmDONnLgzh5ECdncRN0M0M4ffZl0MugDFqF2nhUUWpn_sN_AeOJeOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear operators associated with p-Dunford, p-Pettis and p-Bochner integrable functions with values in a Banach space</title><source>ScienceDirect Freedom Collection</source><creator>Mondal, Pratikshan ; Dey, Lakshmi Kanta ; Ali, Sk. Jaker</creator><creatorcontrib>Mondal, Pratikshan ; Dey, Lakshmi Kanta ; Ali, Sk. Jaker</creatorcontrib><description>In the present paper, we study several aspects of linear operators associated with p-Bochner, p-Dunford and p-Pettis integrable functions defined on a finite measure space with values in a Banach space. Continuity and compactness properties of said operators are discussed in details. We investigate the operators in the light of p-summingness and order boundedness. We study p′-Pettis representability and p′-Bochner representability of an operator T∈L(Lp(μ),X), p∈(1,∞). Equicompactness and collective compactness of a family of linear operators associated with a family of integrable functions are also studied. Some results on equicompactness and collective compactness are obtained in the sequel.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2022.126269</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>[formula omitted]-Bochner representable ; Collectively compact set ; Equicompact set ; p-Bochner integrable function ; p-Dunford integrable function ; p-Pettis integrable function</subject><ispartof>Journal of mathematical analysis and applications, 2022-10, Vol.514 (1), p.126269, Article 126269</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-203d2b0e8e4d55424fc15094e8683221efe0d25dc67de17eac51c9afa5bcbea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mondal, Pratikshan</creatorcontrib><creatorcontrib>Dey, Lakshmi Kanta</creatorcontrib><creatorcontrib>Ali, Sk. Jaker</creatorcontrib><title>Linear operators associated with p-Dunford, p-Pettis and p-Bochner integrable functions with values in a Banach space</title><title>Journal of mathematical analysis and applications</title><description>In the present paper, we study several aspects of linear operators associated with p-Bochner, p-Dunford and p-Pettis integrable functions defined on a finite measure space with values in a Banach space. Continuity and compactness properties of said operators are discussed in details. We investigate the operators in the light of p-summingness and order boundedness. We study p′-Pettis representability and p′-Bochner representability of an operator T∈L(Lp(μ),X), p∈(1,∞). Equicompactness and collective compactness of a family of linear operators associated with a family of integrable functions are also studied. Some results on equicompactness and collective compactness are obtained in the sequel.</description><subject>[formula omitted]-Bochner representable</subject><subject>Collectively compact set</subject><subject>Equicompact set</subject><subject>p-Bochner integrable function</subject><subject>p-Dunford integrable function</subject><subject>p-Pettis integrable function</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU_5AbYm6Td4cddPWNCDgrcwTaZuym5SklTx39ulnj3NDPM-w_AQcslZyhkvr_u03wOkggmRclGKsjkiC86aMmE1z47Jgk2bROTVxyk5C6FnjPOi4gsyboxF8NQN6CE6HyiE4JSBiJp-m7ilQ3I32s55fTW1rxijmTJWT8PKqa1FT42N-Omh3SHtRquicTbM7BfsRgxTgAJdgQW1pWEAhefkpINdwIu_uiTvD_dv66dk8_L4vL7dJIrXPCaCZVq0DGvMdVHkIu8UL1iTY13WmRAcO2RaFFqVlUZeIaiCqwY6KFrVIjTZkoj5rvIuBI-dHLzZg_-RnMmDONnLgzh5ECdncRN0M0M4ffZl0MugDFqF2nhUUWpn_sN_AeOJeOw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Mondal, Pratikshan</creator><creator>Dey, Lakshmi Kanta</creator><creator>Ali, Sk. Jaker</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Linear operators associated with p-Dunford, p-Pettis and p-Bochner integrable functions with values in a Banach space</title><author>Mondal, Pratikshan ; Dey, Lakshmi Kanta ; Ali, Sk. Jaker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-203d2b0e8e4d55424fc15094e8683221efe0d25dc67de17eac51c9afa5bcbea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>[formula omitted]-Bochner representable</topic><topic>Collectively compact set</topic><topic>Equicompact set</topic><topic>p-Bochner integrable function</topic><topic>p-Dunford integrable function</topic><topic>p-Pettis integrable function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Pratikshan</creatorcontrib><creatorcontrib>Dey, Lakshmi Kanta</creatorcontrib><creatorcontrib>Ali, Sk. Jaker</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Pratikshan</au><au>Dey, Lakshmi Kanta</au><au>Ali, Sk. Jaker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear operators associated with p-Dunford, p-Pettis and p-Bochner integrable functions with values in a Banach space</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>514</volume><issue>1</issue><spage>126269</spage><pages>126269-</pages><artnum>126269</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>In the present paper, we study several aspects of linear operators associated with p-Bochner, p-Dunford and p-Pettis integrable functions defined on a finite measure space with values in a Banach space. Continuity and compactness properties of said operators are discussed in details. We investigate the operators in the light of p-summingness and order boundedness. We study p′-Pettis representability and p′-Bochner representability of an operator T∈L(Lp(μ),X), p∈(1,∞). Equicompactness and collective compactness of a family of linear operators associated with a family of integrable functions are also studied. Some results on equicompactness and collective compactness are obtained in the sequel.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2022.126269</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2022-10, Vol.514 (1), p.126269, Article 126269 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2022_126269 |
source | ScienceDirect Freedom Collection |
subjects | [formula omitted]-Bochner representable Collectively compact set Equicompact set p-Bochner integrable function p-Dunford integrable function p-Pettis integrable function |
title | Linear operators associated with p-Dunford, p-Pettis and p-Bochner integrable functions with values in a Banach space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20operators%20associated%20with%20p-Dunford,%20p-Pettis%20and%20p-Bochner%20integrable%20functions%20with%20values%20in%20a%20Banach%20space&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Mondal,%20Pratikshan&rft.date=2022-10-01&rft.volume=514&rft.issue=1&rft.spage=126269&rft.pages=126269-&rft.artnum=126269&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2022.126269&rft_dat=%3Celsevier_cross%3ES0022247X22002839%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-203d2b0e8e4d55424fc15094e8683221efe0d25dc67de17eac51c9afa5bcbea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |