Loading…

The exponential stabilization of a heat-wave coupled system and its approximation

In this paper, we consider exponential stabilization for a heat-wave coupled system under boundary control and collocated observation. It is known that the system is polynomially stable without control. Two kinds of feedback strategies namely static negative proportional feedback and dynamic feedbac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2023-05, Vol.521 (1), p.126927, Article 126927
Main Authors: Zheng, Fu, Zhang, Sijia, Wang, Huakun, Guo, Bao-Zhu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413
cites cdi_FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413
container_end_page
container_issue 1
container_start_page 126927
container_title Journal of mathematical analysis and applications
container_volume 521
creator Zheng, Fu
Zhang, Sijia
Wang, Huakun
Guo, Bao-Zhu
description In this paper, we consider exponential stabilization for a heat-wave coupled system under boundary control and collocated observation. It is known that the system is polynomially stable without control. Two kinds of feedback strategies namely static negative proportional feedback and dynamic feedback are designed. By the Lyapunov function direct method, the exponential stabilities of the closed-loop systems under different two feedbacks are firstly verified. Secondly, the H∞ robustness is further analyzed and the related sufficient conditions are developed. Furthermore, the closed-loop systems are discretized into semi-discrete systems by a new finite difference method, and the uniform exponential stabilities of the discrete systems are established by the approach paralleling to the continuous counterpart.
doi_str_mv 10.1016/j.jmaa.2022.126927
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2022_126927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X22009416</els_id><sourcerecordid>S0022247X22009416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZfwNO-QOLspmkS8CJFrVAQoYK3ZbI7SzekSciutfXp3VrPXmYO83_Dz8fYrYBUgJjfNWmzRUwlSJkKOa9kccYmAqp5AqXIztkE4iWRs-Ljkl153wAIkRdiwt7WG-K0H_qOuuCw5T5g7Vr3jcH1He8tR74hDMkX7ojr_nNoyXB_8IG2HDvDXfAch2Hs9277y1yzC4utp5u_PWXvT4_rxTJZvT6_LB5Wic4AQpyZlSIDW5HBEqy2VWmkAajzIrdZXceYwDwHTVCZmRZoY2WUmkpZ0kxkUyZPf_XYez-SVcMYK4wHJUAdpahGHaWooxR1khKh-xNEsdnO0ai8dtRpMm4kHZTp3X_4D1fdbGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The exponential stabilization of a heat-wave coupled system and its approximation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zheng, Fu ; Zhang, Sijia ; Wang, Huakun ; Guo, Bao-Zhu</creator><creatorcontrib>Zheng, Fu ; Zhang, Sijia ; Wang, Huakun ; Guo, Bao-Zhu</creatorcontrib><description>In this paper, we consider exponential stabilization for a heat-wave coupled system under boundary control and collocated observation. It is known that the system is polynomially stable without control. Two kinds of feedback strategies namely static negative proportional feedback and dynamic feedback are designed. By the Lyapunov function direct method, the exponential stabilities of the closed-loop systems under different two feedbacks are firstly verified. Secondly, the H∞ robustness is further analyzed and the related sufficient conditions are developed. Furthermore, the closed-loop systems are discretized into semi-discrete systems by a new finite difference method, and the uniform exponential stabilities of the discrete systems are established by the approach paralleling to the continuous counterpart.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2022.126927</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>[formula omitted] robustness ; Collocated observation and control ; Exponential stabilization ; Heat-wave coupled equation ; Semi-discretization</subject><ispartof>Journal of mathematical analysis and applications, 2023-05, Vol.521 (1), p.126927, Article 126927</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413</citedby><cites>FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Zheng, Fu</creatorcontrib><creatorcontrib>Zhang, Sijia</creatorcontrib><creatorcontrib>Wang, Huakun</creatorcontrib><creatorcontrib>Guo, Bao-Zhu</creatorcontrib><title>The exponential stabilization of a heat-wave coupled system and its approximation</title><title>Journal of mathematical analysis and applications</title><description>In this paper, we consider exponential stabilization for a heat-wave coupled system under boundary control and collocated observation. It is known that the system is polynomially stable without control. Two kinds of feedback strategies namely static negative proportional feedback and dynamic feedback are designed. By the Lyapunov function direct method, the exponential stabilities of the closed-loop systems under different two feedbacks are firstly verified. Secondly, the H∞ robustness is further analyzed and the related sufficient conditions are developed. Furthermore, the closed-loop systems are discretized into semi-discrete systems by a new finite difference method, and the uniform exponential stabilities of the discrete systems are established by the approach paralleling to the continuous counterpart.</description><subject>[formula omitted] robustness</subject><subject>Collocated observation and control</subject><subject>Exponential stabilization</subject><subject>Heat-wave coupled equation</subject><subject>Semi-discretization</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFZfwNO-QOLspmkS8CJFrVAQoYK3ZbI7SzekSciutfXp3VrPXmYO83_Dz8fYrYBUgJjfNWmzRUwlSJkKOa9kccYmAqp5AqXIztkE4iWRs-Ljkl153wAIkRdiwt7WG-K0H_qOuuCw5T5g7Vr3jcH1He8tR74hDMkX7ojr_nNoyXB_8IG2HDvDXfAch2Hs9277y1yzC4utp5u_PWXvT4_rxTJZvT6_LB5Wic4AQpyZlSIDW5HBEqy2VWmkAajzIrdZXceYwDwHTVCZmRZoY2WUmkpZ0kxkUyZPf_XYez-SVcMYK4wHJUAdpahGHaWooxR1khKh-xNEsdnO0ai8dtRpMm4kHZTp3X_4D1fdbGE</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zheng, Fu</creator><creator>Zhang, Sijia</creator><creator>Wang, Huakun</creator><creator>Guo, Bao-Zhu</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>The exponential stabilization of a heat-wave coupled system and its approximation</title><author>Zheng, Fu ; Zhang, Sijia ; Wang, Huakun ; Guo, Bao-Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>[formula omitted] robustness</topic><topic>Collocated observation and control</topic><topic>Exponential stabilization</topic><topic>Heat-wave coupled equation</topic><topic>Semi-discretization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Fu</creatorcontrib><creatorcontrib>Zhang, Sijia</creatorcontrib><creatorcontrib>Wang, Huakun</creatorcontrib><creatorcontrib>Guo, Bao-Zhu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Fu</au><au>Zhang, Sijia</au><au>Wang, Huakun</au><au>Guo, Bao-Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The exponential stabilization of a heat-wave coupled system and its approximation</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>521</volume><issue>1</issue><spage>126927</spage><pages>126927-</pages><artnum>126927</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>In this paper, we consider exponential stabilization for a heat-wave coupled system under boundary control and collocated observation. It is known that the system is polynomially stable without control. Two kinds of feedback strategies namely static negative proportional feedback and dynamic feedback are designed. By the Lyapunov function direct method, the exponential stabilities of the closed-loop systems under different two feedbacks are firstly verified. Secondly, the H∞ robustness is further analyzed and the related sufficient conditions are developed. Furthermore, the closed-loop systems are discretized into semi-discrete systems by a new finite difference method, and the uniform exponential stabilities of the discrete systems are established by the approach paralleling to the continuous counterpart.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2022.126927</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2023-05, Vol.521 (1), p.126927, Article 126927
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2022_126927
source ScienceDirect Freedom Collection 2022-2024
subjects [formula omitted] robustness
Collocated observation and control
Exponential stabilization
Heat-wave coupled equation
Semi-discretization
title The exponential stabilization of a heat-wave coupled system and its approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20exponential%20stabilization%20of%20a%20heat-wave%20coupled%20system%20and%20its%20approximation&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Zheng,%20Fu&rft.date=2023-05-01&rft.volume=521&rft.issue=1&rft.spage=126927&rft.pages=126927-&rft.artnum=126927&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2022.126927&rft_dat=%3Celsevier_cross%3ES0022247X22009416%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-c33f2130f9eda80fcf98d2d00b575f3bbc301a550ce09d4c1af115a2ce828e413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true