Loading…
Transversality versus strong tangential transversality
The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space t...
Saved in:
Published in: | Journal of mathematical analysis and applications 2023-08, Vol.524 (2), p.127215, Article 127215 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393 |
container_end_page | |
container_issue | 2 |
container_start_page | 127215 |
container_title | Journal of mathematical analysis and applications |
container_volume | 524 |
creator | Ribarska, Nadezhda Tasheva, Maria |
description | The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved. |
doi_str_mv | 10.1016/j.jmaa.2023.127215 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2023_127215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X23002184</els_id><sourcerecordid>S0022247X23002184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393</originalsourceid><addsrcrecordid>eNp9j81KxDAURoMoWEdfwFVfoDU3aZIG3MigjjDgZgR3IX8dUjqtJHFg3t4pdePG1b1c7vn4DkL3gGvAwB_6uj9oXRNMaA1EEGAXqAAseYVboJeowJiQijTi8xrdpNRjDMAEFIjvoh7T0cekh5BP5bx9pzLlOI37Mutx78cc9FDmP3-36KrTQ_J3v3OFPl6ed-tNtX1_fVs_bStLGOSKNRIMF5i2DTFGO0kbLZ1tOedMyPlGRGNM56HVlENLhRdOSuews8xQSVeILLk2TilF36mvGA46nhRgNZurXs3majZXi_kZelwgf252DD6qZIMfrXchepuVm8J_-A8ISmKB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transversality versus strong tangential transversality</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ribarska, Nadezhda ; Tasheva, Maria</creator><creatorcontrib>Ribarska, Nadezhda ; Tasheva, Maria</creatorcontrib><description>The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2023.127215</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nonseparation of sets ; Normal intersection properties ; Strong tangential transversality ; Sum rule</subject><ispartof>Journal of mathematical analysis and applications, 2023-08, Vol.524 (2), p.127215, Article 127215</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ribarska, Nadezhda</creatorcontrib><creatorcontrib>Tasheva, Maria</creatorcontrib><title>Transversality versus strong tangential transversality</title><title>Journal of mathematical analysis and applications</title><description>The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.</description><subject>Nonseparation of sets</subject><subject>Normal intersection properties</subject><subject>Strong tangential transversality</subject><subject>Sum rule</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAURoMoWEdfwFVfoDU3aZIG3MigjjDgZgR3IX8dUjqtJHFg3t4pdePG1b1c7vn4DkL3gGvAwB_6uj9oXRNMaA1EEGAXqAAseYVboJeowJiQijTi8xrdpNRjDMAEFIjvoh7T0cekh5BP5bx9pzLlOI37Mutx78cc9FDmP3-36KrTQ_J3v3OFPl6ed-tNtX1_fVs_bStLGOSKNRIMF5i2DTFGO0kbLZ1tOedMyPlGRGNM56HVlENLhRdOSuews8xQSVeILLk2TilF36mvGA46nhRgNZurXs3majZXi_kZelwgf252DD6qZIMfrXchepuVm8J_-A8ISmKB</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Ribarska, Nadezhda</creator><creator>Tasheva, Maria</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230815</creationdate><title>Transversality versus strong tangential transversality</title><author>Ribarska, Nadezhda ; Tasheva, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Nonseparation of sets</topic><topic>Normal intersection properties</topic><topic>Strong tangential transversality</topic><topic>Sum rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribarska, Nadezhda</creatorcontrib><creatorcontrib>Tasheva, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribarska, Nadezhda</au><au>Tasheva, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transversality versus strong tangential transversality</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>524</volume><issue>2</issue><spage>127215</spage><pages>127215-</pages><artnum>127215</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2023.127215</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2023-08, Vol.524 (2), p.127215, Article 127215 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2023_127215 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Nonseparation of sets Normal intersection properties Strong tangential transversality Sum rule |
title | Transversality versus strong tangential transversality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transversality%20versus%20strong%20tangential%20transversality&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Ribarska,%20Nadezhda&rft.date=2023-08-15&rft.volume=524&rft.issue=2&rft.spage=127215&rft.pages=127215-&rft.artnum=127215&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2023.127215&rft_dat=%3Celsevier_cross%3ES0022247X23002184%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |