Loading…

Transversality versus strong tangential transversality

The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2023-08, Vol.524 (2), p.127215, Article 127215
Main Authors: Ribarska, Nadezhda, Tasheva, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393
container_end_page
container_issue 2
container_start_page 127215
container_title Journal of mathematical analysis and applications
container_volume 524
creator Ribarska, Nadezhda
Tasheva, Maria
description The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.
doi_str_mv 10.1016/j.jmaa.2023.127215
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2023_127215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X23002184</els_id><sourcerecordid>S0022247X23002184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393</originalsourceid><addsrcrecordid>eNp9j81KxDAURoMoWEdfwFVfoDU3aZIG3MigjjDgZgR3IX8dUjqtJHFg3t4pdePG1b1c7vn4DkL3gGvAwB_6uj9oXRNMaA1EEGAXqAAseYVboJeowJiQijTi8xrdpNRjDMAEFIjvoh7T0cekh5BP5bx9pzLlOI37Mutx78cc9FDmP3-36KrTQ_J3v3OFPl6ed-tNtX1_fVs_bStLGOSKNRIMF5i2DTFGO0kbLZ1tOedMyPlGRGNM56HVlENLhRdOSuews8xQSVeILLk2TilF36mvGA46nhRgNZurXs3majZXi_kZelwgf252DD6qZIMfrXchepuVm8J_-A8ISmKB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transversality versus strong tangential transversality</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ribarska, Nadezhda ; Tasheva, Maria</creator><creatorcontrib>Ribarska, Nadezhda ; Tasheva, Maria</creatorcontrib><description>The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2023.127215</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nonseparation of sets ; Normal intersection properties ; Strong tangential transversality ; Sum rule</subject><ispartof>Journal of mathematical analysis and applications, 2023-08, Vol.524 (2), p.127215, Article 127215</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ribarska, Nadezhda</creatorcontrib><creatorcontrib>Tasheva, Maria</creatorcontrib><title>Transversality versus strong tangential transversality</title><title>Journal of mathematical analysis and applications</title><description>The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.</description><subject>Nonseparation of sets</subject><subject>Normal intersection properties</subject><subject>Strong tangential transversality</subject><subject>Sum rule</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAURoMoWEdfwFVfoDU3aZIG3MigjjDgZgR3IX8dUjqtJHFg3t4pdePG1b1c7vn4DkL3gGvAwB_6uj9oXRNMaA1EEGAXqAAseYVboJeowJiQijTi8xrdpNRjDMAEFIjvoh7T0cekh5BP5bx9pzLlOI37Mutx78cc9FDmP3-36KrTQ_J3v3OFPl6ed-tNtX1_fVs_bStLGOSKNRIMF5i2DTFGO0kbLZ1tOedMyPlGRGNM56HVlENLhRdOSuews8xQSVeILLk2TilF36mvGA46nhRgNZurXs3majZXi_kZelwgf252DD6qZIMfrXchepuVm8J_-A8ISmKB</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Ribarska, Nadezhda</creator><creator>Tasheva, Maria</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230815</creationdate><title>Transversality versus strong tangential transversality</title><author>Ribarska, Nadezhda ; Tasheva, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Nonseparation of sets</topic><topic>Normal intersection properties</topic><topic>Strong tangential transversality</topic><topic>Sum rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribarska, Nadezhda</creatorcontrib><creatorcontrib>Tasheva, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribarska, Nadezhda</au><au>Tasheva, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transversality versus strong tangential transversality</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>524</volume><issue>2</issue><spage>127215</spage><pages>127215-</pages><artnum>127215</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The notions of transversality and strong tangential transversality are compared – it is proved that strong tangential transversality implies transversality and the reverse implication fails. Further, it is obtained that the two notions coincide for convex sets and some applications to Banach space theory are indicated. A sum rule for Clarke subdifferential for sum of functions “Lipschitz in one variable” is proved.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2023.127215</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2023-08, Vol.524 (2), p.127215, Article 127215
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2023_127215
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Nonseparation of sets
Normal intersection properties
Strong tangential transversality
Sum rule
title Transversality versus strong tangential transversality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transversality%20versus%20strong%20tangential%20transversality&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Ribarska,%20Nadezhda&rft.date=2023-08-15&rft.volume=524&rft.issue=2&rft.spage=127215&rft.pages=127215-&rft.artnum=127215&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2023.127215&rft_dat=%3Celsevier_cross%3ES0022247X23002184%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-5491b6703842bbad934a9dc866657942bb274bbfe18a361837e7d99dd0dc5b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true