Loading…
Information geometric optimal reconfiguration of pulse-Doppler sensor parameters
The objective of this paper is to provide the mathematics needed to develop a new model for continuously adjusting the configuration parameters of a pulse-Doppler sensor so as to optimize information gain. The reconfiguration of the sensor parameters is optimal in the sense that the parameters are u...
Saved in:
Published in: | Journal of mathematical analysis and applications 2024-02, Vol.530 (1), p.127669, Article 127669 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-bdbb7342ed5afabd57647332f22b108362045c5ce8d3863ab1ee671dc37a01713 |
container_end_page | |
container_issue | 1 |
container_start_page | 127669 |
container_title | Journal of mathematical analysis and applications |
container_volume | 530 |
creator | Marshall, Anthony Williams, Simon Bottema, Murk J. |
description | The objective of this paper is to provide the mathematics needed to develop a new model for continuously adjusting the configuration parameters of a pulse-Doppler sensor so as to optimize information gain. The reconfiguration of the sensor parameters is optimal in the sense that the parameters are updated over time so as to traverse a geodesic over a parameter manifold. The main result is to compute the Fisher information metric for measuring the instantaneous information gained by a sensor regarding the target. In pursuing this goal, a method for evaluating a class of integrals comprising products of shifted sinc functions and derivatives of such functions is presented. Expressions are also found to allow estimates of the number of terms needed to evaluate the infinite series representation of the Fisher metric to within a given tolerance. Finally, steps for computing geodesics in the configuration manifold are provided.
•Reconfiguration of sensor parameters is optimised with respect to information gain.•Infinite series representations of the Fisher metric are derived.•Optimal reconfiguration strategies are geodesics in a suitable manifold.•Formulae for integrals of products of shifted sinc functions and derivates. |
doi_str_mv | 10.1016/j.jmaa.2023.127669 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2023_127669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X23006728</els_id><sourcerecordid>S0022247X23006728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bdbb7342ed5afabd57647332f22b108362045c5ce8d3863ab1ee671dc37a01713</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKu-QGtu0iYdcCPj38CALhTchTS5GVKmTUk6gm9vS127upvzHc79CLkFWgAFcdcWbad1wSjjBTApxOaMrIBuRE5r4OdkRSljOSvl1yW5SqmlFKCSsCLvu96F2OnRhz47YOhwjN5kYRh9p49ZRBN65w-nuCSCy4bTMWH-GIbhiDFL2KcQs0FHPaEY0zW5cHpK3PzdNfl8fvrYvub7t5fd9mGfG7apxryxTSN5ydBW2unGVlKUknPmGGuA1lwwWlamMlhbXguuG0AUEqzhUlOQwNeELb0mhpQiOjXEaXL8UUDV7ES1anaiZidqcTJB9wuE07Jvj1El47E3aP306ahs8P_hv28jbFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information geometric optimal reconfiguration of pulse-Doppler sensor parameters</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Marshall, Anthony ; Williams, Simon ; Bottema, Murk J.</creator><creatorcontrib>Marshall, Anthony ; Williams, Simon ; Bottema, Murk J.</creatorcontrib><description>The objective of this paper is to provide the mathematics needed to develop a new model for continuously adjusting the configuration parameters of a pulse-Doppler sensor so as to optimize information gain. The reconfiguration of the sensor parameters is optimal in the sense that the parameters are updated over time so as to traverse a geodesic over a parameter manifold. The main result is to compute the Fisher information metric for measuring the instantaneous information gained by a sensor regarding the target. In pursuing this goal, a method for evaluating a class of integrals comprising products of shifted sinc functions and derivatives of such functions is presented. Expressions are also found to allow estimates of the number of terms needed to evaluate the infinite series representation of the Fisher metric to within a given tolerance. Finally, steps for computing geodesics in the configuration manifold are provided.
•Reconfiguration of sensor parameters is optimised with respect to information gain.•Infinite series representations of the Fisher metric are derived.•Optimal reconfiguration strategies are geodesics in a suitable manifold.•Formulae for integrals of products of shifted sinc functions and derivates.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2023.127669</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fisher metric ; Information geometry ; Integrals of sinc products ; Pulse-Doppler ; Sensor scheduling</subject><ispartof>Journal of mathematical analysis and applications, 2024-02, Vol.530 (1), p.127669, Article 127669</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-bdbb7342ed5afabd57647332f22b108362045c5ce8d3863ab1ee671dc37a01713</cites><orcidid>0000-0002-8641-1374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marshall, Anthony</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><creatorcontrib>Bottema, Murk J.</creatorcontrib><title>Information geometric optimal reconfiguration of pulse-Doppler sensor parameters</title><title>Journal of mathematical analysis and applications</title><description>The objective of this paper is to provide the mathematics needed to develop a new model for continuously adjusting the configuration parameters of a pulse-Doppler sensor so as to optimize information gain. The reconfiguration of the sensor parameters is optimal in the sense that the parameters are updated over time so as to traverse a geodesic over a parameter manifold. The main result is to compute the Fisher information metric for measuring the instantaneous information gained by a sensor regarding the target. In pursuing this goal, a method for evaluating a class of integrals comprising products of shifted sinc functions and derivatives of such functions is presented. Expressions are also found to allow estimates of the number of terms needed to evaluate the infinite series representation of the Fisher metric to within a given tolerance. Finally, steps for computing geodesics in the configuration manifold are provided.
•Reconfiguration of sensor parameters is optimised with respect to information gain.•Infinite series representations of the Fisher metric are derived.•Optimal reconfiguration strategies are geodesics in a suitable manifold.•Formulae for integrals of products of shifted sinc functions and derivates.</description><subject>Fisher metric</subject><subject>Information geometry</subject><subject>Integrals of sinc products</subject><subject>Pulse-Doppler</subject><subject>Sensor scheduling</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKu-QGtu0iYdcCPj38CALhTchTS5GVKmTUk6gm9vS127upvzHc79CLkFWgAFcdcWbad1wSjjBTApxOaMrIBuRE5r4OdkRSljOSvl1yW5SqmlFKCSsCLvu96F2OnRhz47YOhwjN5kYRh9p49ZRBN65w-nuCSCy4bTMWH-GIbhiDFL2KcQs0FHPaEY0zW5cHpK3PzdNfl8fvrYvub7t5fd9mGfG7apxryxTSN5ydBW2unGVlKUknPmGGuA1lwwWlamMlhbXguuG0AUEqzhUlOQwNeELb0mhpQiOjXEaXL8UUDV7ES1anaiZidqcTJB9wuE07Jvj1El47E3aP306ahs8P_hv28jbFA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Marshall, Anthony</creator><creator>Williams, Simon</creator><creator>Bottema, Murk J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8641-1374</orcidid></search><sort><creationdate>20240201</creationdate><title>Information geometric optimal reconfiguration of pulse-Doppler sensor parameters</title><author>Marshall, Anthony ; Williams, Simon ; Bottema, Murk J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bdbb7342ed5afabd57647332f22b108362045c5ce8d3863ab1ee671dc37a01713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fisher metric</topic><topic>Information geometry</topic><topic>Integrals of sinc products</topic><topic>Pulse-Doppler</topic><topic>Sensor scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, Anthony</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><creatorcontrib>Bottema, Murk J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, Anthony</au><au>Williams, Simon</au><au>Bottema, Murk J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information geometric optimal reconfiguration of pulse-Doppler sensor parameters</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>530</volume><issue>1</issue><spage>127669</spage><pages>127669-</pages><artnum>127669</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>The objective of this paper is to provide the mathematics needed to develop a new model for continuously adjusting the configuration parameters of a pulse-Doppler sensor so as to optimize information gain. The reconfiguration of the sensor parameters is optimal in the sense that the parameters are updated over time so as to traverse a geodesic over a parameter manifold. The main result is to compute the Fisher information metric for measuring the instantaneous information gained by a sensor regarding the target. In pursuing this goal, a method for evaluating a class of integrals comprising products of shifted sinc functions and derivatives of such functions is presented. Expressions are also found to allow estimates of the number of terms needed to evaluate the infinite series representation of the Fisher metric to within a given tolerance. Finally, steps for computing geodesics in the configuration manifold are provided.
•Reconfiguration of sensor parameters is optimised with respect to information gain.•Infinite series representations of the Fisher metric are derived.•Optimal reconfiguration strategies are geodesics in a suitable manifold.•Formulae for integrals of products of shifted sinc functions and derivates.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2023.127669</doi><orcidid>https://orcid.org/0000-0002-8641-1374</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2024-02, Vol.530 (1), p.127669, Article 127669 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2023_127669 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Fisher metric Information geometry Integrals of sinc products Pulse-Doppler Sensor scheduling |
title | Information geometric optimal reconfiguration of pulse-Doppler sensor parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20geometric%20optimal%20reconfiguration%20of%20pulse-Doppler%20sensor%20parameters&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Marshall,%20Anthony&rft.date=2024-02-01&rft.volume=530&rft.issue=1&rft.spage=127669&rft.pages=127669-&rft.artnum=127669&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2023.127669&rft_dat=%3Celsevier_cross%3ES0022247X23006728%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-bdbb7342ed5afabd57647332f22b108362045c5ce8d3863ab1ee671dc37a01713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |