Loading…

The numerical index of 2-dimensional Lipschitz-free spaces

We provide the explicit formula for the numerical index of any 2-dimensional Lipschitz-free space, also giving the construction of operators attaining this value as its numerical radius. As a consequence, the numerical index of 2-dimensional Lipschitz-free spaces can take any value of the interval [...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2024-10, Vol.538 (1), p.128333, Article 128333
Main Authors: Cobollo, Ch, Guirao, A.J., Montesinos, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c295t-79f8490dd6cb069975143cb70f4d1fe03ba0a0da1b8759716dcb3e99a0f1ddb63
container_end_page
container_issue 1
container_start_page 128333
container_title Journal of mathematical analysis and applications
container_volume 538
creator Cobollo, Ch
Guirao, A.J.
Montesinos, V.
description We provide the explicit formula for the numerical index of any 2-dimensional Lipschitz-free space, also giving the construction of operators attaining this value as its numerical radius. As a consequence, the numerical index of 2-dimensional Lipschitz-free spaces can take any value of the interval [12,1], and this whole range of numerical indices can be attained by taking 2-dimensional subspaces of any Lipschitz-free space of the form F(A), where A⊂Rn with n≥2 is any set with non-empty interior.
doi_str_mv 10.1016/j.jmaa.2024.128333
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X24002555</els_id><sourcerecordid>S0022247X24002555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-79f8490dd6cb069975143cb70f4d1fe03ba0a0da1b8759716dcb3e99a0f1ddb63</originalsourceid><addsrcrecordid>eNp9j81KAzEUhYMoWKsv4GpeIOO9ycxkIm6k-AcFNxXchUxyQzN0ZkpSRX16W-ra1YED3-F8jF0jlAjY3PRlP1hbChBViaKVUp6wGYJuOLQoT9kMQAguKvV-zi5y7gEQa4UzdrtaUzF-DJSis5sijp6-iikUgvs40JjjNO7rZdxmt467Hx4SUZG31lG-ZGfBbjJd_eWcvT0-rBbPfPn69LK4X3IndL3jSoe20uB94zpotFY1VtJ1CkLlMRDIzoIFb7FrVa0VNt51krS2END7rpFzJo67Lk05Jwpmm-Jg07dBMAd705uDvTnYm6P9Hro7QrR_9hkpmewijY58TOR2xk_xP_wXe8Ri5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The numerical index of 2-dimensional Lipschitz-free spaces</title><source>ScienceDirect Freedom Collection</source><creator>Cobollo, Ch ; Guirao, A.J. ; Montesinos, V.</creator><creatorcontrib>Cobollo, Ch ; Guirao, A.J. ; Montesinos, V.</creatorcontrib><description>We provide the explicit formula for the numerical index of any 2-dimensional Lipschitz-free space, also giving the construction of operators attaining this value as its numerical radius. As a consequence, the numerical index of 2-dimensional Lipschitz-free spaces can take any value of the interval [12,1], and this whole range of numerical indices can be attained by taking 2-dimensional subspaces of any Lipschitz-free space of the form F(A), where A⊂Rn with n≥2 is any set with non-empty interior.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128333</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Geometry of Banach spaces ; Lipschitz-free ; Numerical index ; Numerical radius</subject><ispartof>Journal of mathematical analysis and applications, 2024-10, Vol.538 (1), p.128333, Article 128333</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-79f8490dd6cb069975143cb70f4d1fe03ba0a0da1b8759716dcb3e99a0f1ddb63</cites><orcidid>0000-0002-5901-5798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cobollo, Ch</creatorcontrib><creatorcontrib>Guirao, A.J.</creatorcontrib><creatorcontrib>Montesinos, V.</creatorcontrib><title>The numerical index of 2-dimensional Lipschitz-free spaces</title><title>Journal of mathematical analysis and applications</title><description>We provide the explicit formula for the numerical index of any 2-dimensional Lipschitz-free space, also giving the construction of operators attaining this value as its numerical radius. As a consequence, the numerical index of 2-dimensional Lipschitz-free spaces can take any value of the interval [12,1], and this whole range of numerical indices can be attained by taking 2-dimensional subspaces of any Lipschitz-free space of the form F(A), where A⊂Rn with n≥2 is any set with non-empty interior.</description><subject>Geometry of Banach spaces</subject><subject>Lipschitz-free</subject><subject>Numerical index</subject><subject>Numerical radius</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEUhYMoWKsv4GpeIOO9ycxkIm6k-AcFNxXchUxyQzN0ZkpSRX16W-ra1YED3-F8jF0jlAjY3PRlP1hbChBViaKVUp6wGYJuOLQoT9kMQAguKvV-zi5y7gEQa4UzdrtaUzF-DJSis5sijp6-iikUgvs40JjjNO7rZdxmt467Hx4SUZG31lG-ZGfBbjJd_eWcvT0-rBbPfPn69LK4X3IndL3jSoe20uB94zpotFY1VtJ1CkLlMRDIzoIFb7FrVa0VNt51krS2END7rpFzJo67Lk05Jwpmm-Jg07dBMAd705uDvTnYm6P9Hro7QrR_9hkpmewijY58TOR2xk_xP_wXe8Ri5Q</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cobollo, Ch</creator><creator>Guirao, A.J.</creator><creator>Montesinos, V.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5901-5798</orcidid></search><sort><creationdate>20241001</creationdate><title>The numerical index of 2-dimensional Lipschitz-free spaces</title><author>Cobollo, Ch ; Guirao, A.J. ; Montesinos, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-79f8490dd6cb069975143cb70f4d1fe03ba0a0da1b8759716dcb3e99a0f1ddb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Geometry of Banach spaces</topic><topic>Lipschitz-free</topic><topic>Numerical index</topic><topic>Numerical radius</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobollo, Ch</creatorcontrib><creatorcontrib>Guirao, A.J.</creatorcontrib><creatorcontrib>Montesinos, V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobollo, Ch</au><au>Guirao, A.J.</au><au>Montesinos, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical index of 2-dimensional Lipschitz-free spaces</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>538</volume><issue>1</issue><spage>128333</spage><pages>128333-</pages><artnum>128333</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We provide the explicit formula for the numerical index of any 2-dimensional Lipschitz-free space, also giving the construction of operators attaining this value as its numerical radius. As a consequence, the numerical index of 2-dimensional Lipschitz-free spaces can take any value of the interval [12,1], and this whole range of numerical indices can be attained by taking 2-dimensional subspaces of any Lipschitz-free space of the form F(A), where A⊂Rn with n≥2 is any set with non-empty interior.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128333</doi><orcidid>https://orcid.org/0000-0002-5901-5798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2024-10, Vol.538 (1), p.128333, Article 128333
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2024_128333
source ScienceDirect Freedom Collection
subjects Geometry of Banach spaces
Lipschitz-free
Numerical index
Numerical radius
title The numerical index of 2-dimensional Lipschitz-free spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20index%20of%202-dimensional%20Lipschitz-free%20spaces&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Cobollo,%20Ch&rft.date=2024-10-01&rft.volume=538&rft.issue=1&rft.spage=128333&rft.pages=128333-&rft.artnum=128333&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2024.128333&rft_dat=%3Celsevier_cross%3ES0022247X24002555%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-79f8490dd6cb069975143cb70f4d1fe03ba0a0da1b8759716dcb3e99a0f1ddb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true