Loading…

The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f

Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2024-11, Vol.539 (2), p.128570, Article 128570
Main Author: Chu, Hùng Việt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-428615bd41846ae60d4bfbc944e38803ff4f6894e6cef7778612366c18aa588b3
container_end_page
container_issue 2
container_start_page 128570
container_title Journal of mathematical analysis and applications
container_volume 539
creator Chu, Hùng Việt
description Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy for some f∈F. Furthermore, we prove that for all non-identity function f∈F, we have the surprising equivalencef-greedy⟺f-almost greedy. We give various examples of Banach spaces to illustrate our results.
doi_str_mv 10.1016/j.jmaa.2024.128570
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X2400492X</els_id><sourcerecordid>S0022247X2400492X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-428615bd41846ae60d4bfbc944e38803ff4f6894e6cef7778612366c18aa588b3</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFP-QGuSpmkGXmSoEwZeJngLafJlTdmakXTT-ettqWdP3-F7n5eXB6F7SnJKqHho83avdc4I4zllsqzIBZpRshAZkbS4RDNCGMsYrz6v0U1KLSGUlhWdIb1pAPdNhNSEnfXdFm8jgD1jvduG6Ptmj08Q0zFhfTjE8O33uvehS_hr-OHkfyDhOhw7CxbXZ2wg9tp32B07M-XcLbpyepfg7u_O0cfL82a5ytbvr2_Lp3VmGCv7jDMpaFlbTiUXGgSxvHa1WXAOhZSkcI47IRcchAFXVdWQZoUQhkqtSynrYo7Y1GtiSCmCU4c4rI1nRYkaJalWjZLUKElNkgbocYJgWHbyEFUyHjoD1kcwvbLB_4f_Aprich0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f</title><source>ScienceDirect Freedom Collection</source><creator>Chu, Hùng Việt</creator><creatorcontrib>Chu, Hùng Việt</creatorcontrib><description>Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy for some f∈F. Furthermore, we prove that for all non-identity function f∈F, we have the surprising equivalencef-greedy⟺f-almost greedy. We give various examples of Banach spaces to illustrate our results.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128570</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Almost greedy ; Bases ; Thresholding greedy algorithm</subject><ispartof>Journal of mathematical analysis and applications, 2024-11, Vol.539 (2), p.128570, Article 128570</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-428615bd41846ae60d4bfbc944e38803ff4f6894e6cef7778612366c18aa588b3</cites><orcidid>0000-0002-9966-0038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chu, Hùng Việt</creatorcontrib><title>The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f</title><title>Journal of mathematical analysis and applications</title><description>Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy for some f∈F. Furthermore, we prove that for all non-identity function f∈F, we have the surprising equivalencef-greedy⟺f-almost greedy. We give various examples of Banach spaces to illustrate our results.</description><subject>Almost greedy</subject><subject>Bases</subject><subject>Thresholding greedy algorithm</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFP-QGuSpmkGXmSoEwZeJngLafJlTdmakXTT-ettqWdP3-F7n5eXB6F7SnJKqHho83avdc4I4zllsqzIBZpRshAZkbS4RDNCGMsYrz6v0U1KLSGUlhWdIb1pAPdNhNSEnfXdFm8jgD1jvduG6Ptmj08Q0zFhfTjE8O33uvehS_hr-OHkfyDhOhw7CxbXZ2wg9tp32B07M-XcLbpyepfg7u_O0cfL82a5ytbvr2_Lp3VmGCv7jDMpaFlbTiUXGgSxvHa1WXAOhZSkcI47IRcchAFXVdWQZoUQhkqtSynrYo7Y1GtiSCmCU4c4rI1nRYkaJalWjZLUKElNkgbocYJgWHbyEFUyHjoD1kcwvbLB_4f_Aprich0</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Chu, Hùng Việt</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9966-0038</orcidid></search><sort><creationdate>20241115</creationdate><title>The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f</title><author>Chu, Hùng Việt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-428615bd41846ae60d4bfbc944e38803ff4f6894e6cef7778612366c18aa588b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Almost greedy</topic><topic>Bases</topic><topic>Thresholding greedy algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Hùng Việt</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Hùng Việt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>539</volume><issue>2</issue><spage>128570</spage><pages>128570-</pages><artnum>128570</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy for some f∈F. Furthermore, we prove that for all non-identity function f∈F, we have the surprising equivalencef-greedy⟺f-almost greedy. We give various examples of Banach spaces to illustrate our results.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128570</doi><orcidid>https://orcid.org/0000-0002-9966-0038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2024-11, Vol.539 (2), p.128570, Article 128570
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2024_128570
source ScienceDirect Freedom Collection
subjects Almost greedy
Bases
Thresholding greedy algorithm
title The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thresholding%20greedy%20algorithm%20versus%20approximations%20with%20sizes%20bounded%20by%20certain%20functions%20f&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Chu,%20H%C3%B9ng%20Vi%C3%AA%CC%A3t&rft.date=2024-11-15&rft.volume=539&rft.issue=2&rft.spage=128570&rft.pages=128570-&rft.artnum=128570&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2024.128570&rft_dat=%3Celsevier_cross%3ES0022247X2400492X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-428615bd41846ae60d4bfbc944e38803ff4f6894e6cef7778612366c18aa588b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true