Loading…

On the zeros of polyanalytic polynomials

We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2024-12, Vol.540 (1), p.128595, Article 128595
Main Authors: Sète, Olivier, Zur, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73
container_end_page
container_issue 1
container_start_page 128595
container_title Journal of mathematical analysis and applications
container_volume 540
creator Sète, Olivier
Zur, Jan
description We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.
doi_str_mv 10.1016/j.jmaa.2024.128595
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X24005171</els_id><sourcerecordid>S0022247X24005171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEf_gKsu3bS-lzZNCm5k0FEYmI2Cu5CmL5jSj6EpQv31dqxrV5e7OJd7GLtFSBGwuG_SpjMm5cDzFLkSpThjEUJZJKAwO2cRAOcJz-XHJbsKoQFAFBIjdnfo4-mT4m8ahxAPLj4O7Wx6086Tt7-lHzpv2nDNLtwSdPOXG_b-_PS2fUn2h93r9nGfWFQ4JcZQ5oR14HglHedCSi6VU7WsLEDu0FR5oZRRVnBhRVlJdJQZclSXRCSzDePrrl0OhZGcPo6-M-OsEfTJVTf65KpPrnp1XaCHFaLl2ZenUQfrqbdU-5HspOvB_4f_AJFtXaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the zeros of polyanalytic polynomials</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sète, Olivier ; Zur, Jan</creator><creatorcontrib>Sète, Olivier ; Zur, Jan</creatorcontrib><description>We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128595</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fundamental theorem of algebra ; Harmonic polynomial ; Inclusion region ; Polyanalytic polynomial ; Wilmshurst's problem ; Zeros</subject><ispartof>Journal of mathematical analysis and applications, 2024-12, Vol.540 (1), p.128595, Article 128595</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73</cites><orcidid>0000-0002-5611-8900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><title>On the zeros of polyanalytic polynomials</title><title>Journal of mathematical analysis and applications</title><description>We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.</description><subject>Fundamental theorem of algebra</subject><subject>Harmonic polynomial</subject><subject>Inclusion region</subject><subject>Polyanalytic polynomial</subject><subject>Wilmshurst's problem</subject><subject>Zeros</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEf_gKsu3bS-lzZNCm5k0FEYmI2Cu5CmL5jSj6EpQv31dqxrV5e7OJd7GLtFSBGwuG_SpjMm5cDzFLkSpThjEUJZJKAwO2cRAOcJz-XHJbsKoQFAFBIjdnfo4-mT4m8ahxAPLj4O7Wx6086Tt7-lHzpv2nDNLtwSdPOXG_b-_PS2fUn2h93r9nGfWFQ4JcZQ5oR14HglHedCSi6VU7WsLEDu0FR5oZRRVnBhRVlJdJQZclSXRCSzDePrrl0OhZGcPo6-M-OsEfTJVTf65KpPrnp1XaCHFaLl2ZenUQfrqbdU-5HspOvB_4f_AJFtXaw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sète, Olivier</creator><creator>Zur, Jan</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5611-8900</orcidid></search><sort><creationdate>20241201</creationdate><title>On the zeros of polyanalytic polynomials</title><author>Sète, Olivier ; Zur, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fundamental theorem of algebra</topic><topic>Harmonic polynomial</topic><topic>Inclusion region</topic><topic>Polyanalytic polynomial</topic><topic>Wilmshurst's problem</topic><topic>Zeros</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sète, Olivier</au><au>Zur, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the zeros of polyanalytic polynomials</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>540</volume><issue>1</issue><spage>128595</spage><pages>128595-</pages><artnum>128595</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128595</doi><orcidid>https://orcid.org/0000-0002-5611-8900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2024-12, Vol.540 (1), p.128595, Article 128595
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2024_128595
source ScienceDirect Freedom Collection 2022-2024
subjects Fundamental theorem of algebra
Harmonic polynomial
Inclusion region
Polyanalytic polynomial
Wilmshurst's problem
Zeros
title On the zeros of polyanalytic polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20zeros%20of%20polyanalytic%20polynomials&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=S%C3%A8te,%20Olivier&rft.date=2024-12-01&rft.volume=540&rft.issue=1&rft.spage=128595&rft.pages=128595-&rft.artnum=128595&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2024.128595&rft_dat=%3Celsevier_cross%3ES0022247X24005171%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true