Loading…
On the zeros of polyanalytic polynomials
We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree...
Saved in:
Published in: | Journal of mathematical analysis and applications 2024-12, Vol.540 (1), p.128595, Article 128595 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73 |
container_end_page | |
container_issue | 1 |
container_start_page | 128595 |
container_title | Journal of mathematical analysis and applications |
container_volume | 540 |
creator | Sète, Olivier Zur, Jan |
description | We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros. |
doi_str_mv | 10.1016/j.jmaa.2024.128595 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X24005171</els_id><sourcerecordid>S0022247X24005171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEf_gKsu3bS-lzZNCm5k0FEYmI2Cu5CmL5jSj6EpQv31dqxrV5e7OJd7GLtFSBGwuG_SpjMm5cDzFLkSpThjEUJZJKAwO2cRAOcJz-XHJbsKoQFAFBIjdnfo4-mT4m8ahxAPLj4O7Wx6086Tt7-lHzpv2nDNLtwSdPOXG_b-_PS2fUn2h93r9nGfWFQ4JcZQ5oR14HglHedCSi6VU7WsLEDu0FR5oZRRVnBhRVlJdJQZclSXRCSzDePrrl0OhZGcPo6-M-OsEfTJVTf65KpPrnp1XaCHFaLl2ZenUQfrqbdU-5HspOvB_4f_AJFtXaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the zeros of polyanalytic polynomials</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sète, Olivier ; Zur, Jan</creator><creatorcontrib>Sète, Olivier ; Zur, Jan</creatorcontrib><description>We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128595</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fundamental theorem of algebra ; Harmonic polynomial ; Inclusion region ; Polyanalytic polynomial ; Wilmshurst's problem ; Zeros</subject><ispartof>Journal of mathematical analysis and applications, 2024-12, Vol.540 (1), p.128595, Article 128595</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73</cites><orcidid>0000-0002-5611-8900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><title>On the zeros of polyanalytic polynomials</title><title>Journal of mathematical analysis and applications</title><description>We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.</description><subject>Fundamental theorem of algebra</subject><subject>Harmonic polynomial</subject><subject>Inclusion region</subject><subject>Polyanalytic polynomial</subject><subject>Wilmshurst's problem</subject><subject>Zeros</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEf_gKsu3bS-lzZNCm5k0FEYmI2Cu5CmL5jSj6EpQv31dqxrV5e7OJd7GLtFSBGwuG_SpjMm5cDzFLkSpThjEUJZJKAwO2cRAOcJz-XHJbsKoQFAFBIjdnfo4-mT4m8ahxAPLj4O7Wx6086Tt7-lHzpv2nDNLtwSdPOXG_b-_PS2fUn2h93r9nGfWFQ4JcZQ5oR14HglHedCSi6VU7WsLEDu0FR5oZRRVnBhRVlJdJQZclSXRCSzDePrrl0OhZGcPo6-M-OsEfTJVTf65KpPrnp1XaCHFaLl2ZenUQfrqbdU-5HspOvB_4f_AJFtXaw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sète, Olivier</creator><creator>Zur, Jan</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5611-8900</orcidid></search><sort><creationdate>20241201</creationdate><title>On the zeros of polyanalytic polynomials</title><author>Sète, Olivier ; Zur, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fundamental theorem of algebra</topic><topic>Harmonic polynomial</topic><topic>Inclusion region</topic><topic>Polyanalytic polynomial</topic><topic>Wilmshurst's problem</topic><topic>Zeros</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sète, Olivier</au><au>Zur, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the zeros of polyanalytic polynomials</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>540</volume><issue>1</issue><spage>128595</spage><pages>128595-</pages><artnum>128595</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We give sufficient conditions under which a polyanalytic polynomial of degree n has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by n2. We then show that for all k∈{0,1,2,…,n2,∞} there exists a polyanalytic polynomial of degree n with exactly k distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree n with n nonzero coefficients and the maximum number of n2 zeros.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128595</doi><orcidid>https://orcid.org/0000-0002-5611-8900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2024-12, Vol.540 (1), p.128595, Article 128595 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2024_128595 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Fundamental theorem of algebra Harmonic polynomial Inclusion region Polyanalytic polynomial Wilmshurst's problem Zeros |
title | On the zeros of polyanalytic polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20zeros%20of%20polyanalytic%20polynomials&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=S%C3%A8te,%20Olivier&rft.date=2024-12-01&rft.volume=540&rft.issue=1&rft.spage=128595&rft.pages=128595-&rft.artnum=128595&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2024.128595&rft_dat=%3Celsevier_cross%3ES0022247X24005171%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-aae3f5cf0f2b7f22577278f8d7bc004f1ab4688a8c525c59b71fe3aefed9eee73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |