Loading…
An anageometric time scale calculus and its some basic applications
Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous...
Saved in:
Published in: | Journal of mathematical analysis and applications 2025-01, Vol.541 (1), p.128691, Article 128691 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583 |
container_end_page | |
container_issue | 1 |
container_start_page | 128691 |
container_title | Journal of mathematical analysis and applications |
container_volume | 541 |
creator | Boruah, Khirod Hazarika, Bipan |
description | Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy. |
doi_str_mv | 10.1016/j.jmaa.2024.128691 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X24006139</els_id><sourcerecordid>S0022247X24006139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583</originalsourceid><addsrcrecordid>eNp9j8tKxDAUQLNQcBz9AVf5gdY8py24GYovGHCj4C4kNzeS0hdJR_Dv7TCu3dy7OedyDyF3nJWc8d19V3aDtaVgQpVc1LuGX5ANY0IUQlWfV-Q6544xznXFN6Tdj9SO9gunAZcUgS5xQJrB9kjXAcf-mFfA07hkmleIOptXzM5zH8EucRrzDbkMts94-7e35OPp8b19KQ5vz6_t_lAAr_lSNF45CY1Q0lXorKyZc8KJgBa0rMEz5r3STIe6EYFJBVI5DAGUll4LXcstEee7kKacEwYzpzjY9GM4M6d005lTujmlm3P6Kj2cJVw_-46YTIaII6CPCWExfor_6b94-2TU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An anageometric time scale calculus and its some basic applications</title><source>ScienceDirect Journals</source><creator>Boruah, Khirod ; Hazarika, Bipan</creator><creatorcontrib>Boruah, Khirod ; Hazarika, Bipan</creatorcontrib><description>Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.</description><identifier>ISSN: 0022-247X</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128691</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Anageometric calculus ; Anageometric time scale ; Delta anageometric derivative</subject><ispartof>Journal of mathematical analysis and applications, 2025-01, Vol.541 (1), p.128691, Article 128691</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583</cites><orcidid>0000-0002-0644-0600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Boruah, Khirod</creatorcontrib><creatorcontrib>Hazarika, Bipan</creatorcontrib><title>An anageometric time scale calculus and its some basic applications</title><title>Journal of mathematical analysis and applications</title><description>Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.</description><subject>Anageometric calculus</subject><subject>Anageometric time scale</subject><subject>Delta anageometric derivative</subject><issn>0022-247X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxDAUQLNQcBz9AVf5gdY8py24GYovGHCj4C4kNzeS0hdJR_Dv7TCu3dy7OedyDyF3nJWc8d19V3aDtaVgQpVc1LuGX5ANY0IUQlWfV-Q6544xznXFN6Tdj9SO9gunAZcUgS5xQJrB9kjXAcf-mFfA07hkmleIOptXzM5zH8EucRrzDbkMts94-7e35OPp8b19KQ5vz6_t_lAAr_lSNF45CY1Q0lXorKyZc8KJgBa0rMEz5r3STIe6EYFJBVI5DAGUll4LXcstEee7kKacEwYzpzjY9GM4M6d005lTujmlm3P6Kj2cJVw_-46YTIaII6CPCWExfor_6b94-2TU</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Boruah, Khirod</creator><creator>Hazarika, Bipan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0644-0600</orcidid></search><sort><creationdate>20250101</creationdate><title>An anageometric time scale calculus and its some basic applications</title><author>Boruah, Khirod ; Hazarika, Bipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anageometric calculus</topic><topic>Anageometric time scale</topic><topic>Delta anageometric derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boruah, Khirod</creatorcontrib><creatorcontrib>Hazarika, Bipan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boruah, Khirod</au><au>Hazarika, Bipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An anageometric time scale calculus and its some basic applications</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>541</volume><issue>1</issue><spage>128691</spage><pages>128691-</pages><artnum>128691</artnum><issn>0022-247X</issn><abstract>Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128691</doi><orcidid>https://orcid.org/0000-0002-0644-0600</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2025-01, Vol.541 (1), p.128691, Article 128691 |
issn | 0022-247X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmaa_2024_128691 |
source | ScienceDirect Journals |
subjects | Anageometric calculus Anageometric time scale Delta anageometric derivative |
title | An anageometric time scale calculus and its some basic applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20anageometric%20time%20scale%20calculus%20and%20its%20some%20basic%20applications&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Boruah,%20Khirod&rft.date=2025-01-01&rft.volume=541&rft.issue=1&rft.spage=128691&rft.pages=128691-&rft.artnum=128691&rft.issn=0022-247X&rft_id=info:doi/10.1016/j.jmaa.2024.128691&rft_dat=%3Celsevier_cross%3ES0022247X24006139%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |