Loading…

An anageometric time scale calculus and its some basic applications

Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2025-01, Vol.541 (1), p.128691, Article 128691
Main Authors: Boruah, Khirod, Hazarika, Bipan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583
container_end_page
container_issue 1
container_start_page 128691
container_title Journal of mathematical analysis and applications
container_volume 541
creator Boruah, Khirod
Hazarika, Bipan
description Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.
doi_str_mv 10.1016/j.jmaa.2024.128691
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X24006139</els_id><sourcerecordid>S0022247X24006139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583</originalsourceid><addsrcrecordid>eNp9j8tKxDAUQLNQcBz9AVf5gdY8py24GYovGHCj4C4kNzeS0hdJR_Dv7TCu3dy7OedyDyF3nJWc8d19V3aDtaVgQpVc1LuGX5ANY0IUQlWfV-Q6544xznXFN6Tdj9SO9gunAZcUgS5xQJrB9kjXAcf-mFfA07hkmleIOptXzM5zH8EucRrzDbkMts94-7e35OPp8b19KQ5vz6_t_lAAr_lSNF45CY1Q0lXorKyZc8KJgBa0rMEz5r3STIe6EYFJBVI5DAGUll4LXcstEee7kKacEwYzpzjY9GM4M6d005lTujmlm3P6Kj2cJVw_-46YTIaII6CPCWExfor_6b94-2TU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An anageometric time scale calculus and its some basic applications</title><source>ScienceDirect Journals</source><creator>Boruah, Khirod ; Hazarika, Bipan</creator><creatorcontrib>Boruah, Khirod ; Hazarika, Bipan</creatorcontrib><description>Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.</description><identifier>ISSN: 0022-247X</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128691</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Anageometric calculus ; Anageometric time scale ; Delta anageometric derivative</subject><ispartof>Journal of mathematical analysis and applications, 2025-01, Vol.541 (1), p.128691, Article 128691</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583</cites><orcidid>0000-0002-0644-0600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Boruah, Khirod</creatorcontrib><creatorcontrib>Hazarika, Bipan</creatorcontrib><title>An anageometric time scale calculus and its some basic applications</title><title>Journal of mathematical analysis and applications</title><description>Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.</description><subject>Anageometric calculus</subject><subject>Anageometric time scale</subject><subject>Delta anageometric derivative</subject><issn>0022-247X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxDAUQLNQcBz9AVf5gdY8py24GYovGHCj4C4kNzeS0hdJR_Dv7TCu3dy7OedyDyF3nJWc8d19V3aDtaVgQpVc1LuGX5ANY0IUQlWfV-Q6544xznXFN6Tdj9SO9gunAZcUgS5xQJrB9kjXAcf-mFfA07hkmleIOptXzM5zH8EucRrzDbkMts94-7e35OPp8b19KQ5vz6_t_lAAr_lSNF45CY1Q0lXorKyZc8KJgBa0rMEz5r3STIe6EYFJBVI5DAGUll4LXcstEee7kKacEwYzpzjY9GM4M6d005lTujmlm3P6Kj2cJVw_-46YTIaII6CPCWExfor_6b94-2TU</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Boruah, Khirod</creator><creator>Hazarika, Bipan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0644-0600</orcidid></search><sort><creationdate>20250101</creationdate><title>An anageometric time scale calculus and its some basic applications</title><author>Boruah, Khirod ; Hazarika, Bipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anageometric calculus</topic><topic>Anageometric time scale</topic><topic>Delta anageometric derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boruah, Khirod</creatorcontrib><creatorcontrib>Hazarika, Bipan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boruah, Khirod</au><au>Hazarika, Bipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An anageometric time scale calculus and its some basic applications</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>541</volume><issue>1</issue><spage>128691</spage><pages>128691-</pages><artnum>128691</artnum><issn>0022-247X</issn><abstract>Anageometric calculus is a branch of non-Newtonian calculus introduced by M. Grossman and R. Katz in 1967, in which changes in functional values are measured by linear differences, but arguments are measured by ratios. The theory of time scales was initiated by S. Hilger in 1988 to unify continuous and discrete analysis. In this article, we introduce anageometric time scale calculus to discuss dynamic equations in which the values of the independent variables show nonlinear behaviour. This newly introduced calculus will be more applicable than other calculi in atomic reactors, growth models, etc. We shall discuss some applications of anageometric time scale calculus on the geometric real field R(G) with its optimality and better accuracy.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128691</doi><orcidid>https://orcid.org/0000-0002-0644-0600</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2025-01, Vol.541 (1), p.128691, Article 128691
issn 0022-247X
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2024_128691
source ScienceDirect Journals
subjects Anageometric calculus
Anageometric time scale
Delta anageometric derivative
title An anageometric time scale calculus and its some basic applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20anageometric%20time%20scale%20calculus%20and%20its%20some%20basic%20applications&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Boruah,%20Khirod&rft.date=2025-01-01&rft.volume=541&rft.issue=1&rft.spage=128691&rft.pages=128691-&rft.artnum=128691&rft.issn=0022-247X&rft_id=info:doi/10.1016/j.jmaa.2024.128691&rft_dat=%3Celsevier_cross%3ES0022247X24006139%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-9d4b3c9243b7eba380bb2b2feac538cd00dd4505f892f034c34beffc453d52583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true