Loading…

On large submodules in Hilbert C⁎-modules

We consider several natural ways of expressing the idea that a one-sided ideal in a C⁎-algebra (or a submodule in a Hilbert C⁎-module) is large, and show that they differ, unlike the case of two-sided ideals in C⁎-algebras. We then show how these different notions, for ideals and for submodules, are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2025-02, Vol.542 (2), p.128781, Article 128781
Main Author: Manuilov, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-aeea53098356653ee010ac860547f79447b17783350259d9ae9ec91410342b7d3
container_end_page
container_issue 2
container_start_page 128781
container_title Journal of mathematical analysis and applications
container_volume 542
creator Manuilov, V.
description We consider several natural ways of expressing the idea that a one-sided ideal in a C⁎-algebra (or a submodule in a Hilbert C⁎-module) is large, and show that they differ, unlike the case of two-sided ideals in C⁎-algebras. We then show how these different notions, for ideals and for submodules, are related. We also study some permanence properties for these notions. Finally, we use essential right ideals to extend the inner product on a Hilbert C⁎-module to a part of the dual module.
doi_str_mv 10.1016/j.jmaa.2024.128781
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X24007030</els_id><sourcerecordid>S0022247X24007030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-aeea53098356653ee010ac860547f79447b17783350259d9ae9ec91410342b7d3</originalsourceid><addsrcrecordid>eNp9j81Kw0AUhWehYK2-gKvsJfHe-clkwI0UtYVCNwruhsnkRiYkqcy0gktfwIf0SWxJ164OHPgO52PsBqFAwPKuK7rBuYIDlwXySld4xmYAnOdc6rcLdplSB4CoNM7Y7WbMehffKUv7etg2-55SFsZsGfqa4i5b_H7_5Kf-ip23rk90fco5e316fFks8_XmebV4WOeec7XLHZFTAkwlVFkqQQQIzlclKKlbbaTUNWpdCaGAK9MYR4a8QYkgJK91I-aMT7s-blOK1NqPGAYXvyyCPSrazh4V7VHRTooH6H6C6PDsM1C0yQcaPTUhkt_ZZhv-w_8AIipaiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On large submodules in Hilbert C⁎-modules</title><source>ScienceDirect Journals</source><creator>Manuilov, V.</creator><creatorcontrib>Manuilov, V.</creatorcontrib><description>We consider several natural ways of expressing the idea that a one-sided ideal in a C⁎-algebra (or a submodule in a Hilbert C⁎-module) is large, and show that they differ, unlike the case of two-sided ideals in C⁎-algebras. We then show how these different notions, for ideals and for submodules, are related. We also study some permanence properties for these notions. Finally, we use essential right ideals to extend the inner product on a Hilbert C⁎-module to a part of the dual module.</description><identifier>ISSN: 0022-247X</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128781</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>[formula omitted]-algebra ; Hilbert [formula omitted]-module ; Right ideal ; Submodule</subject><ispartof>Journal of mathematical analysis and applications, 2025-02, Vol.542 (2), p.128781, Article 128781</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-aeea53098356653ee010ac860547f79447b17783350259d9ae9ec91410342b7d3</cites><orcidid>0000-0001-7626-6882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Manuilov, V.</creatorcontrib><title>On large submodules in Hilbert C⁎-modules</title><title>Journal of mathematical analysis and applications</title><description>We consider several natural ways of expressing the idea that a one-sided ideal in a C⁎-algebra (or a submodule in a Hilbert C⁎-module) is large, and show that they differ, unlike the case of two-sided ideals in C⁎-algebras. We then show how these different notions, for ideals and for submodules, are related. We also study some permanence properties for these notions. Finally, we use essential right ideals to extend the inner product on a Hilbert C⁎-module to a part of the dual module.</description><subject>[formula omitted]-algebra</subject><subject>Hilbert [formula omitted]-module</subject><subject>Right ideal</subject><subject>Submodule</subject><issn>0022-247X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9j81Kw0AUhWehYK2-gKvsJfHe-clkwI0UtYVCNwruhsnkRiYkqcy0gktfwIf0SWxJ164OHPgO52PsBqFAwPKuK7rBuYIDlwXySld4xmYAnOdc6rcLdplSB4CoNM7Y7WbMehffKUv7etg2-55SFsZsGfqa4i5b_H7_5Kf-ip23rk90fco5e316fFks8_XmebV4WOeec7XLHZFTAkwlVFkqQQQIzlclKKlbbaTUNWpdCaGAK9MYR4a8QYkgJK91I-aMT7s-blOK1NqPGAYXvyyCPSrazh4V7VHRTooH6H6C6PDsM1C0yQcaPTUhkt_ZZhv-w_8AIipaiQ</recordid><startdate>20250215</startdate><enddate>20250215</enddate><creator>Manuilov, V.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7626-6882</orcidid></search><sort><creationdate>20250215</creationdate><title>On large submodules in Hilbert C⁎-modules</title><author>Manuilov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-aeea53098356653ee010ac860547f79447b17783350259d9ae9ec91410342b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>[formula omitted]-algebra</topic><topic>Hilbert [formula omitted]-module</topic><topic>Right ideal</topic><topic>Submodule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manuilov, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manuilov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On large submodules in Hilbert C⁎-modules</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2025-02-15</date><risdate>2025</risdate><volume>542</volume><issue>2</issue><spage>128781</spage><pages>128781-</pages><artnum>128781</artnum><issn>0022-247X</issn><abstract>We consider several natural ways of expressing the idea that a one-sided ideal in a C⁎-algebra (or a submodule in a Hilbert C⁎-module) is large, and show that they differ, unlike the case of two-sided ideals in C⁎-algebras. We then show how these different notions, for ideals and for submodules, are related. We also study some permanence properties for these notions. Finally, we use essential right ideals to extend the inner product on a Hilbert C⁎-module to a part of the dual module.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128781</doi><orcidid>https://orcid.org/0000-0001-7626-6882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2025-02, Vol.542 (2), p.128781, Article 128781
issn 0022-247X
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2024_128781
source ScienceDirect Journals
subjects [formula omitted]-algebra
Hilbert [formula omitted]-module
Right ideal
Submodule
title On large submodules in Hilbert C⁎-modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20large%20submodules%20in%20Hilbert%20C%E2%81%8E-modules&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Manuilov,%20V.&rft.date=2025-02-15&rft.volume=542&rft.issue=2&rft.spage=128781&rft.pages=128781-&rft.artnum=128781&rft.issn=0022-247X&rft_id=info:doi/10.1016/j.jmaa.2024.128781&rft_dat=%3Celsevier_cross%3ES0022247X24007030%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-aeea53098356653ee010ac860547f79447b17783350259d9ae9ec91410342b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true