Loading…

A sharp bound on the number of self-intersections of a trigonometric curve

We obtain a sharp bound on the number of self-intersections of a closed planar curve with trigonometric parameterization. Moreover, we show that a generic curve of this form is normal in the sense of Whitney.

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2025-03, Vol.543 (2), p.128995, Article 128995
Main Authors: Kalmykov, Sergei, Kovalev, Leonid V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-5b49edcbaf80f4d10b85a3e9e161991efee3d4c83d773594e5b752eeb16995a73
container_end_page
container_issue 2
container_start_page 128995
container_title Journal of mathematical analysis and applications
container_volume 543
creator Kalmykov, Sergei
Kovalev, Leonid V.
description We obtain a sharp bound on the number of self-intersections of a closed planar curve with trigonometric parameterization. Moreover, we show that a generic curve of this form is normal in the sense of Whitney.
doi_str_mv 10.1016/j.jmaa.2024.128995
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmaa_2024_128995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X2400917X</els_id><sourcerecordid>S0022247X2400917X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5b49edcbaf80f4d10b85a3e9e161991efee3d4c83d773594e5b752eeb16995a73</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooWnaH-hKP2BXki3bgm5C6JNANy10J_QYNTKxFCQ70L-vTbruaoaBc5l7ELqjpKSENvd92Q9KlYywuqSsE4JfoBUhjBWsbr-u0HXOPSGU8pau0NsG571KR6zjFCyOAY97wGEaNCQcHc5wcIUPI6QMZvQx5OWq8Jj8dwxxgHkx2EzpBDfo0qlDhtu_uUafT48f25di9_78ut3sCsMYHwuuawHWaOU64mpLie64qkAAbagQFBxAZWvTVbZtKy5q4LrlDEDTZq6i2mqN2DnXpJhzAiePyQ8q_UhK5GJA9nIxIBcD8mxghh7OEMyfnTwkmY2HYMD6NBeTNvr_8F-v5mdu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A sharp bound on the number of self-intersections of a trigonometric curve</title><source>Elsevier</source><creator>Kalmykov, Sergei ; Kovalev, Leonid V.</creator><creatorcontrib>Kalmykov, Sergei ; Kovalev, Leonid V.</creatorcontrib><description>We obtain a sharp bound on the number of self-intersections of a closed planar curve with trigonometric parameterization. Moreover, we show that a generic curve of this form is normal in the sense of Whitney.</description><identifier>ISSN: 0022-247X</identifier><identifier>DOI: 10.1016/j.jmaa.2024.128995</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Intersection multiplicity ; Laurent polynomials ; Self-intersections ; Trigonometric curves ; Whitney index</subject><ispartof>Journal of mathematical analysis and applications, 2025-03, Vol.543 (2), p.128995, Article 128995</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-5b49edcbaf80f4d10b85a3e9e161991efee3d4c83d773594e5b752eeb16995a73</cites><orcidid>0000-0001-8002-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kalmykov, Sergei</creatorcontrib><creatorcontrib>Kovalev, Leonid V.</creatorcontrib><title>A sharp bound on the number of self-intersections of a trigonometric curve</title><title>Journal of mathematical analysis and applications</title><description>We obtain a sharp bound on the number of self-intersections of a closed planar curve with trigonometric parameterization. Moreover, we show that a generic curve of this form is normal in the sense of Whitney.</description><subject>Intersection multiplicity</subject><subject>Laurent polynomials</subject><subject>Self-intersections</subject><subject>Trigonometric curves</subject><subject>Whitney index</subject><issn>0022-247X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooWnaH-hKP2BXki3bgm5C6JNANy10J_QYNTKxFCQ70L-vTbruaoaBc5l7ELqjpKSENvd92Q9KlYywuqSsE4JfoBUhjBWsbr-u0HXOPSGU8pau0NsG571KR6zjFCyOAY97wGEaNCQcHc5wcIUPI6QMZvQx5OWq8Jj8dwxxgHkx2EzpBDfo0qlDhtu_uUafT48f25di9_78ut3sCsMYHwuuawHWaOU64mpLie64qkAAbagQFBxAZWvTVbZtKy5q4LrlDEDTZq6i2mqN2DnXpJhzAiePyQ8q_UhK5GJA9nIxIBcD8mxghh7OEMyfnTwkmY2HYMD6NBeTNvr_8F-v5mdu</recordid><startdate>20250315</startdate><enddate>20250315</enddate><creator>Kalmykov, Sergei</creator><creator>Kovalev, Leonid V.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8002-7155</orcidid></search><sort><creationdate>20250315</creationdate><title>A sharp bound on the number of self-intersections of a trigonometric curve</title><author>Kalmykov, Sergei ; Kovalev, Leonid V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5b49edcbaf80f4d10b85a3e9e161991efee3d4c83d773594e5b752eeb16995a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Intersection multiplicity</topic><topic>Laurent polynomials</topic><topic>Self-intersections</topic><topic>Trigonometric curves</topic><topic>Whitney index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalmykov, Sergei</creatorcontrib><creatorcontrib>Kovalev, Leonid V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalmykov, Sergei</au><au>Kovalev, Leonid V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sharp bound on the number of self-intersections of a trigonometric curve</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2025-03-15</date><risdate>2025</risdate><volume>543</volume><issue>2</issue><spage>128995</spage><pages>128995-</pages><artnum>128995</artnum><issn>0022-247X</issn><abstract>We obtain a sharp bound on the number of self-intersections of a closed planar curve with trigonometric parameterization. Moreover, we show that a generic curve of this form is normal in the sense of Whitney.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2024.128995</doi><orcidid>https://orcid.org/0000-0001-8002-7155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2025-03, Vol.543 (2), p.128995, Article 128995
issn 0022-247X
language eng
recordid cdi_crossref_primary_10_1016_j_jmaa_2024_128995
source Elsevier
subjects Intersection multiplicity
Laurent polynomials
Self-intersections
Trigonometric curves
Whitney index
title A sharp bound on the number of self-intersections of a trigonometric curve
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sharp%20bound%20on%20the%20number%20of%20self-intersections%20of%20a%20trigonometric%20curve&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Kalmykov,%20Sergei&rft.date=2025-03-15&rft.volume=543&rft.issue=2&rft.spage=128995&rft.pages=128995-&rft.artnum=128995&rft.issn=0022-247X&rft_id=info:doi/10.1016/j.jmaa.2024.128995&rft_dat=%3Celsevier_cross%3ES0022247X2400917X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-5b49edcbaf80f4d10b85a3e9e161991efee3d4c83d773594e5b752eeb16995a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true