Loading…
Development and performance of a novel ultrasonic vibration plate sonotrode for grinding
Compared with Conventional Grinding (CG), the Ultrasonic Vibration-Assisted Grinding (UVAG) is more competitive for the machining of difficult-to-cut materials. In this article, a novel ultrasonic vibration plate sonotrode that enables the special longitudinal full-wave and transverse half-wave vibr...
Saved in:
Published in: | Journal of manufacturing processes 2020-09, Vol.57, p.174-186 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compared with Conventional Grinding (CG), the Ultrasonic Vibration-Assisted Grinding (UVAG) is more competitive for the machining of difficult-to-cut materials. In this article, a novel ultrasonic vibration plate sonotrode that enables the special longitudinal full-wave and transverse half-wave vibration modes was proposed. The vibration characteristics of the proposed sonotrode was theoretically studied based on the apparent elasticity and Rayleigh methods, achieving a single longitudinal workpiece ultrasonic vibration with an amplitude of 7.6 μm. A superior vibration uniformity was achieved, as indicated by the coupling coefficient of 0.5. Based on the proposed method, the normal and tangential grinding forces decreased by 35 % and 39 % in comparison with the CG, and an improved machined surface was obtained in the UVAG of Ti-6Al-4V, with the following characteristics: vibration amplification of 7.6 μm; a cut depth of 0.1 mm; a workpiece feed rate of 100 mm/min; and a grinding speed of 30 m/s. |
---|---|
ISSN: | 1526-6125 |
DOI: | 10.1016/j.jmapro.2020.06.030 |