Loading…

Magnetization reversal and current hysteresis due to spin injection in magnetic junction

Magnetic junction is considered which consists of two ferromagnetic metal layers, a thin nonmagnetic spacer in between, and nonmagnetic lead. Theory is developed of a magnetization reversal due to spin injection in the junction. Spin-polarized current is perpendicular to the interfaces. One of the f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2004-04, Vol.271 (1), p.88-96
Main Authors: Elliott, Roger J., Epshtein, Ernest M., Gulyaev, Yuri V., Zilberman, Peter E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetic junction is considered which consists of two ferromagnetic metal layers, a thin nonmagnetic spacer in between, and nonmagnetic lead. Theory is developed of a magnetization reversal due to spin injection in the junction. Spin-polarized current is perpendicular to the interfaces. One of the ferromagnetic layers has pinned spins and the other has free spins. The current breaks spin equilibrium in the free spin layer due to spin injection or extraction. The nonequilibrium spins interact with the lattice magnetic moment via the effective s–d exchange field, which is current dependent. Above a certain current density threshold, the interaction leads to a magnetization reversal. Two threshold currents are found, which are reached as the current increases or decreases, respectively, so that a current hysteresis takes place. The theoretical results are in accordance with the experiments on magnetization reversal by current in three-layer junctions Co/Cu/Co prepared in a pillar form.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2003.09.021