Loading…

Spin-flip and domain wall magnetoresistance in quantum magnetic nanocontacts

The theory of nanosize point contacts made of ferromagnetic metals is developed. A general quantum scattering theory is applied to calculate magnetoresistance of a nanocontact with a domain wall located in the constriction. The exact solution of the electron motion in a potential of the linear domai...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2009-10, Vol.321 (19), p.3246-3249
Main Authors: Useinov, N.Kh, Tagirov, L.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The theory of nanosize point contacts made of ferromagnetic metals is developed. A general quantum scattering theory is applied to calculate magnetoresistance of a nanocontact with a domain wall located in the constriction. The exact solution of the electron motion in a potential of the linear domain wall is used as a zero-order approximation. Spin-flip and spin-conserving quantized conductances of the nanocontact are calculated by the perturbation theory by the difference between the model and the Cabrera–Falicov potentials of the domain wall. It is explicitly shown that spin-flip conductance imposes natural limitation on magnetoresistance of the point contact, which otherwise diverges in the regime of complete spin-rectified conductance through the contact.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2009.05.058