Loading…

Orbital-selective altermagnetism and correlation-enhanced spin-splitting in strongly-correlated transition metal oxides

We investigate the altermagnetic properties of strongly-correlated transition metal oxides considering the family of the quasi two-dimensional A2BO4 and three-dimensional ABO3. As a test study, we analyze the Mott insulators Ca2RuO4 and YVO3. In both cases, the orbital physics is extremely relevant...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2023-11, Vol.586, p.171163, Article 171163
Main Authors: Cuono, Giuseppe, Sattigeri, Raghottam M., Skolimowski, Jan, Autieri, Carmine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the altermagnetic properties of strongly-correlated transition metal oxides considering the family of the quasi two-dimensional A2BO4 and three-dimensional ABO3. As a test study, we analyze the Mott insulators Ca2RuO4 and YVO3. In both cases, the orbital physics is extremely relevant in the t2g subsector with the presence of an orbital-selective Mott physics in the first case and of a robust orbital-order in the second case. Using first-principles calculations, we show the presence of an orbital-selective altermagnetism in the case of Ca2RuO4. In the case of YVO3, we study the altermagnetism as a function of the magnetic ordering and of the Coulomb repulsion U. We find that the altermagnetism is present in all magnetic orders with the symmetries of the Brillouin zone depending on the magnetic order. Finally, the Coulomb repulsion enhances the non-relativistic spin-splitting making the strongly-correlated systems an exciting playground for the study of the altermagnetism.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2023.171163